-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathapp.py
348 lines (297 loc) · 13.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import gradio as gr
import os
import shutil
import subprocess
import cv2
import numpy as np
import math
from huggingface_hub import snapshot_download
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
model_ids = [
'runwayml/stable-diffusion-v1-5',
'lllyasviel/sd-controlnet-depth',
'lllyasviel/sd-controlnet-canny',
'lllyasviel/sd-controlnet-openpose',
"lllyasviel/control_v11p_sd15_softedge",
"lllyasviel/control_v11p_sd15_scribble",
"lllyasviel/control_v11p_sd15_lineart_anime",
"lllyasviel/control_v11p_sd15_lineart",
"lllyasviel/control_v11f1p_sd15_depth",
"lllyasviel/control_v11p_sd15_canny",
"lllyasviel/control_v11p_sd15_openpose",
"lllyasviel/control_v11p_sd15_normalbae"
]
for model_id in model_ids:
model_name = model_id.split('/')[-1]
snapshot_download(model_id, cache_dir=f'checkpoints/{model_name}')
def load_model(model_id):
local_dir = f'checkpoints/stable-diffusion-v1-5'
# Check if the directory exists
if os.path.exists(local_dir):
# Delete the directory if it exists
shutil.rmtree(local_dir)
model_name = model_id.split('/')[-1]
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
os.rename(f'checkpoints/{model_name}', f'checkpoints/stable-diffusion-v1-5')
return "model loaded"
def get_frame_count(filepath):
if filepath is not None:
video = cv2.VideoCapture(filepath)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
video.release()
# LIMITS
if frame_count > 100 :
frame_count = 100 # limit to 100 frames to avoid cuDNN errors
return gr.update(maximum=frame_count)
else:
return gr.update(value=1, maximum=100 )
def get_video_dimension(filepath):
video = cv2.VideoCapture(filepath)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(video.get(cv2.CAP_PROP_FPS))
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
video.release()
return width, height, fps, frame_count
def resize_video(input_vid, output_vid, width, height, fps):
print(f"RESIZING ...")
# Open the input video file
video = cv2.VideoCapture(input_vid)
# Create a VideoWriter object to write the resized video
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video
output_video = cv2.VideoWriter(output_vid, fourcc, fps, (width, height))
while True:
# Read a frame from the input video
ret, frame = video.read()
if not ret:
break
# Resize the frame to the desired dimensions
resized_frame = cv2.resize(frame, (width, height))
# Write the resized frame to the output video file
output_video.write(resized_frame)
# Release the video objects
video.release()
output_video.release()
print(f"RESIZE VIDEO DONE!")
return output_vid
def make_nearest_multiple_of_32(number):
remainder = number % 32
if remainder <= 16:
number -= remainder
else:
number += 32 - remainder
return number
def change_video_fps(input_path):
print(f"CHANGING FIANL OUTPUT FPS")
cap = cv2.VideoCapture(input_path)
# Check if the final file already exists
if os.path.exists('output_video.mp4'):
# Delete the existing file
os.remove('output_video.mp4')
output_path = 'output_video.mp4'
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_fps = 12
output_size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
out = cv2.VideoWriter(output_path, fourcc, output_fps, output_size)
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Write the current frame to the output video multiple times to increase the frame rate
for _ in range(output_fps // 8):
out.write(frame)
frame_count += 1
print(f'Processed frame {frame_count}')
cap.release()
out.release()
cv2.destroyAllWindows()
return 'output_video.mp4'
def run_inference(prompt, video_path, version_condition, video_length, seed):
seed = math.floor(seed)
o_width = get_video_dimension(video_path)[0]
o_height = get_video_dimension(video_path)[1]
version, condition = version_condition.split("+")
# Prepare dimensions
if o_width > 512 :
# Calculate the new height while maintaining the aspect ratio
n_height = int(o_height / o_width * 512)
n_width = 512
else:
n_height = o_height
n_width = o_width
# Make sure new dimensions are multipe of 32
r_width = make_nearest_multiple_of_32(n_width)
r_height = make_nearest_multiple_of_32(n_height)
print(f"multiple of 32 sizes : {r_width}x{r_height}")
# Get FPS of original video input
original_fps = get_video_dimension(video_path)[2]
if original_fps > 12 :
print(f"FPS is too high: {original_fps}")
target_fps = 12
else :
target_fps = original_fps
print(f"NEW INPUT FPS: {target_fps}, NEW LENGTH: {video_length}")
# Check if the resized file already exists
if os.path.exists('resized.mp4'):
# Delete the existing file
os.remove('resized.mp4')
resized = resize_video(video_path, 'resized.mp4', r_width, r_height, target_fps)
resized_video_fcount = get_video_dimension(resized)[3]
print(f"RESIZED VIDEO FRAME COUNT: {resized_video_fcount}")
# Make sure new total frame count is enough to handle chosen video length
if video_length > resized_video_fcount :
video_length = resized_video_fcount
# video_length = int((target_fps * video_length) / original_fps)
output_path = 'output/'
os.makedirs(output_path, exist_ok=True)
# Check if the file already exists
if os.path.exists(os.path.join(output_path, f"result.mp4")):
# Delete the existing file
os.remove(os.path.join(output_path, f"result.mp4"))
print(f"RUNNING INFERENCE ...")
if video_length > 16:
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_video_name 'result' --width {r_width} --height {r_height} --seed {seed} --video_length {video_length} --smoother_steps 19 20 --version {version} --is_long_video"
else:
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_video_name 'result' --width {r_width} --height {r_height} --seed {seed} --video_length {video_length} --smoother_steps 19 20 --version {version} "
try:
subprocess.run(command, shell=True)
except cuda.Error as e:
return f"CUDA Error: {e}", None
except RuntimeError as e:
return f"Runtime Error: {e}", None
# Construct the video path
video_path_output = os.path.join(output_path, f"result.mp4")
# Resize to original video input size
#o_width = get_video_dimension(video_path)[0]
#o_height = get_video_dimension(video_path)[1]
#resize_video(video_path_output, 'resized_final.mp4', o_width, o_height, target_fps)
# Check generated video FPS
gen_fps = get_video_dimension(video_path_output)[2]
print(f"GEN VIDEO FPS: {gen_fps}")
final = change_video_fps(video_path_output)
print(f"FINISHED !")
return final
# return final, gr.Group.update(visible=True)
css="""
#col-container {max-width: 810px; margin-left: auto; margin-right: auto;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 13rem;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
img[src*='#center'] {
display: block;
margin: auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
<h1 style="text-align: center;">ControlVideo: Training-free Controllable Text-to-Video Generation</h1>
<p style="text-align: center;">
[<a href="https://arxiv.org/abs/2305.13077" style="color:blue;">arXiv</a>]
[<a href="https://github.com/YBYBZhang/ControlVideo" style="color:blue;">GitHub</a>]
</p>
<p style="text-align: center;"> ControlVideo adapts ControlNet to the video counterpart without any finetuning, aiming to directly inherit its high-quality and consistent generation. </p>
""")
with gr.Column():
with gr.Row():
video_path = gr.Video(label="Input video", source="upload", type="filepath", visible=True, elem_id="video-in")
video_res = gr.Video(label="result", elem_id="video-out")
# with gr.Column():
# video_res = gr.Video(label="result", elem_id="video-out")
# with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
# community_icon = gr.HTML(community_icon_html)
# loading_icon = gr.HTML(loading_icon_html)
# share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Row():
chosen_model = gr.Dropdown(label="Diffusion model (*1.5)", choices=['runwayml/stable-diffusion-v1-5','nitrosocke/Ghibli-Diffusion'], value="runwayml/stable-diffusion-v1-5", allow_custom_value=True)
model_status = gr.Textbox(label="status")
load_model_btn = gr.Button("load model (optional)")
prompt = gr.Textbox(label="prompt", info="If you loaded a custom model, do not forget to include Prompt trigger", elem_id="prompt-in")
with gr.Column():
video_length = gr.Slider(label="Video length", info="How many frames do you want to process ? For demo purpose, max is set to 24", minimum=1, maximum=12, step=1, value=2)
with gr.Row():
# version = gr.Dropdown(label="ControlNet version", choices=["v10", "v11"], value="v10")
version_condition = gr.Dropdown(label="ControlNet version + Condition",
choices=["v10+depth_midas", "v10+canny", "v10+openpose", "v11+softedge_pidinet", "v11+softedge_pidsafe",
"v11+softedge_hed", "v11+softedge_hedsafe", "v11+scribble_hed", "v11+scribble_pidinet", "v11+lineart_anime",
"v11+lineart_coarse", "v11+lineart_realistic", "v11+depth_midas", "v11+depth_leres", "v11+depth_leres++",
"v11+depth_zoe", "v11+canny", "v11+openpose", "v11+openpose_face", "v11+openpose_faceonly", "v11+openpose_full",
"v11+openpose_hand", "v11+normal_bae"], value="v10+depth_midas")
seed = gr.Number(label="seed", value=42)
submit_btn = gr.Button("Submit")
gr.Examples(
examples=[["James bond moonwalks on the beach.", "./data/moonwalk.mp4", 'v10+openpose', 15, 42],
["A striking mallard floats effortlessly on the sparkling pond.", "./data/mallard-water.mp4", "v11+depth_midas", 15, 42]],
fn=run_inference,
inputs=[prompt,
video_path,
version_condition,
video_length,
seed,
],
# outputs=[video_res, share_group],
outputs=video_res,
cache_examples=False
)
# share_button.click(None, [], [], _js=share_js)
load_model_btn.click(fn=load_model, inputs=[chosen_model], outputs=[model_status], queue=False)
video_path.change(fn=get_frame_count,
inputs=[video_path],
outputs=[video_length],
queue=False
)
submit_btn.click(fn=run_inference,
inputs=[prompt,
video_path,
version_condition,
video_length,
seed,
],
outputs=video_res)
demo.queue(max_size=12).launch()