forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
64 lines (54 loc) · 1.72 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import fastdeploy as fd
import cv2
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of modnet onnx model.")
parser.add_argument(
"--image", required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--bg",
type=str,
required=True,
default=None,
help="Path of test background image file.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("input", [1, 3, 256, 256])
return option
args = parse_arguments()
# 配置runtime,加载模型
runtime_option = build_option(args)
model = fd.vision.matting.MODNet(args.model, runtime_option=runtime_option)
#设置推理size, 必须和模型文件一致
model.size = (256, 256)
# 预测图片抠图结果
im = cv2.imread(args.image)
bg = cv2.imread(args.bg)
result = model.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_matting_alpha(im, result)
vis_im_with_bg = fd.vision.swap_background(im, bg, result)
cv2.imwrite("visualized_result_fg.png", vis_im)
cv2.imwrite("visualized_result_replaced_bg.jpg", vis_im_with_bg)
print(
"Visualized result save in ./visualized_result_replaced_bg.jpg and ./visualized_result_fg.jpg"
)