-
Notifications
You must be signed in to change notification settings - Fork 0
/
functional_analysis_anki.tex
360 lines (317 loc) · 11.2 KB
/
functional_analysis_anki.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
% To use these notes, you must copy anki_header.tex
% into the header of your card type in Anki
% layout in Anki:
\documentclass[10pt]{article}
\usepackage[a4paper]{geometry}
\geometry{paperwidth=.5\paperwidth,paperheight=100in,left=2em,right=2em,bottom=1em,top=2em}
\pagestyle{empty}
\setlength{\parindent}{0in}
% encoding:
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{lmodern}
% packages:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{centernot}
\usepackage{parskip}
% Theorem-like environments
\theoremstyle{definition}
\newtheorem*{claim}{Claim}
\newtheorem*{conjecture}{Conjecture}
% Command redirections
\let\P\oldP
\let\oldemptyset\emptyset
\let\emptyset\varnothing
% Letter shorthands
\newcommand{\C}{\mathbb C}
\newcommand{\E}{\mathbb E}
\newcommand{\F}{\mathbb F}
\newcommand{\K}{\mathbb K}
\newcommand{\N}{\mathbb N}
\newcommand{\P}{\mathbb P}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\Z}{\mathbb Z}
\newcommand{\mcA}{\mathcal A}
\newcommand{\mcB}{\mathcal B}
\newcommand{\mcC}{\mathcal C}
\newcommand{\mcD}{\mathcal D}
\newcommand{\mcE}{\mathcal E}
\newcommand{\mcF}{\mathcal F}
\newcommand{\mcG}{\mathcal G}
\newcommand{\mcH}{\mathcal H}
\newcommand{\mcM}{\mathcal M}
\newcommand{\mcN}{\mathcal N}
\newcommand{\mcO}{\mathcal O}
\newcommand{\mcP}{\mathcal P}
\newcommand{\mcQ}{\mathcal Q}
\newcommand{\mcR}{\mathcal R}
\newcommand{\mcS}{\mathcal S}
\newcommand{\mcT}{\mathcal T}
\newcommand{\mcU}{\mathcal U}
\newcommand{\mcV}{\mathcal V}
\newcommand{\eps}{\varepsilon}
\newcommand{\Eps}{\mathcal E}
\newcommand{\curlybrack}[1]{\left\{ #1\right\}}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\norm}[1]{\left\lVert #1\right\rVert}
\newcommand{\inn}[2]{\left\langle #1, #2\right\rangle}
\newcommand{\floor}[1]{\left\lfloor #1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil #1\right\rceil}
\newcommand{\doublesqbrack}[1]{[\![#1]\!]}
\newcommand{\imp}{\implies}
\newcommand{\for}{\forall}
\newcommand{\nin}{\notin}
\newcommand{\comp}{\circ}
\newcommand{\union}{\cup}
\newcommand{\inter}{\cap}
\newcommand{\Union}{\bigcup}
\newcommand{\Inter}{\bigcap}
\newcommand{\hatplus}{\mathbin{\widehat{+}}}
\newcommand{\symdif}{\mathbin\varbigtriangleup}
\newcommand{\aeeq}{\overset{\text{ae}}=}
\newcommand{\lexlt}{\overset{\text{lex}}<}
\newcommand{\colexlt}{\overset{\text{colex}}<}
\newcommand{\wto}{\overset w\to}
\newcommand{\wstarto}{\overset{w*}\to}
\renewcommand{\vec}[1]{\boldsymbol{\mathbf{#1}}}
\renewcommand{\bar}[1]{\overline{#1}}
\let\Im\relax
\let\Re\relax
\DeclareMathOperator{\Ber}{Ber}
\DeclareMathOperator{\conv}{conv}
\DeclareMathOperator{\diam}{diam}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\esssup}{ess sup}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\interior}{int}
\DeclareMathOperator{\lhs}{LHS}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Re}{Re}
\DeclareMathOperator{\rhs}{RHS}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\Var}{Var}
% pdf layout:
\geometry{paperheight=74.25mm}
\usepackage{pgfpages}
\pagestyle{empty}
\pgfpagesuselayout{8 on 1}[a4paper,border shrink=0cm]
\makeatletter
\@tempcnta=1\relax
\loop\ifnum\@tempcnta<9\relax
\pgf@pset{\the\@tempcnta}{bordercode}{\pgfusepath{stroke}}
\advance\@tempcnta by 1\relax
\repeat
\makeatother
% notes, fields, tags:
\def \ifempty#1{\def\temp{#1} \ifx\temp\empty }
\newcommand{\xfield}[1]{
#1\par
\vfill
{\tiny\texttt{\parbox[t]{\textwidth}{\localtag\hfill\\\globaltag\hfill\uuid}}}
\newpage}
\newenvironment{field}{}{\newpage}
\newif\ifnote
\newenvironment{note}{\notetrue}{\notefalse}
\newcommand{\localtag}{}
\newcommand{\globaltag}{}
\newcommand{\uuid}{}
\newcommand{\tags}[1]{
\ifnote
\renewcommand{\localtag}{#1}
\else
\renewcommand{\globaltag}{#1}
\fi
}
\newcommand{\xplain}[1]{
\label{#1} % make sure there's no duplicate label
\renewcommand{\uuid}{#1} % update the UUID for display and Anki disambiguation
}
\begin{document}
% Lecture 1
% Lecture 2
% Lecture 3
% Lecture 4
% Lecture 5
% Lecture 6
% Lecture 7
% Lecture 8
% Lecture 9
% Lecture 10
% Lecture 11
\begin{note}
\tags{boundedness, norm-topology}
\xplain{principle-uniform-Boundedness}
\xfield{Principle of Uniform Boundedness}
\begin{field}
If $\mathcal T \subseteq X^*$ is pointwise bounded ($\for x, \sup_{T \in \mathcal T} \norm{Tx} < \infty$), then it is uniformly bounded ($\sup_{T \in \mathcal T} \norm T < \infty$).
\end{field}
\end{note}
\begin{note}
\tags{boundedness, weak-topology, norm-topology}
\xplain{weak-bounded-implies-norm-bounded}
\xfield{If $A \subseteq X$ is weak-bounded, then it is norm-bounded.}
\begin{field}
This is exactly PUB applied to $\hat A = \{\hat x \mid x \in A\}$.
\end{field}
\end{note}
\begin{note}
\tags{boundedness, weak-star-topology, norm-topology}
\xplain{weak-star-bounded-implies-norm-bounded}
\xfield{If $B \subseteq X^*$ is w*-bounded, then it is norm-bounded.}
\begin{field}
This is exactly PUB applied to $B$.
\end{field}
\end{note}
% Lecture 12
\begin{note}
\tags{convexity, norm-topology, weak-topology}
\xplain{mazur}
\xfield{Mazur's theorem}
\begin{field}
Let $C$ be a convex set in a normed space. Then $\bar C^{\norm\cdot} = \bar C^{\text w}$. In particular,
$$C \text{ norm-closed} \iff C \text{ w-closed}$$
\begin{proof}
WLOG $C$ is nonempty. We already know $\bar C^{\norm\cdot} \subseteq \bar C^{\text w}$ as the weak topology is weaker than the norm-topology. \\
If $x \nin \bar C^{\norm\cdot}$, then Hahn-Banach with $A = \{x\}$ and $B = \bar C^{\norm\cdot}$ gives us $f \in X^*$ such that $f(x) < \inf_B f$. Then $\{z \mid f(z) < \inf_B f\}$ is a w-open neighborhood of $x$ disjoint from $B$. So $x \nin \bar C^{\text w}$.
\end{proof}
\end{field}
\end{note}
% Lecture 13
% Lecture 14
% Lecture 15
% Lecture 16
\begin{note}
\tags{}
\xplain{p-r-o-a-def}
\xfield{Definitions of $\mathcal P(K), \mathcal R(K), \mathcal O(K), A(K)$}
\begin{field}
\begin{align*}
\mathcal P(K) & = \overline{\{f \in C(K) \mid f \text{ polynomial}\}} \\
\mathcal R(K) & = \overline{\{f \in C(K) \mid f \text{ rational function without poles}\}} \\
\mathcal O(K) & = \overline{\{f \in C(K) \mid f \text{ holomorphic on a nhbd of } K\}} \\
A(K) & = \{f \in C(K) \mid f \text{ is holomorphic on } \interior K\}
\end{align*}
\end{field}
\end{note}
\begin{note}
\tags{}
\xplain{p-r-o-a-inclusions}
\xfield{Inclusions between $\mathcal P(K), \mathcal R(K), \mathcal O(K), A(K)$}
\begin{field}
$$\mathcal P(K) \subseteq \mathcal R(K) \subseteq \mathcal O(K) \subseteq A(K) \subseteq C(K)$$
\begin{align*}
\mathcal P(K) = \mathcal R(K) & \iff K^c \text{ connected} \\
\mathcal R(K) = \mathcal O(K) & \text{ always} \\
\mathcal O(K) \ne A(K) & \text{ in general} \\
\mathcal A(K) = C(K) & \iff \interior K = \emptyset
\end{align*}
\end{field}
\end{note}
\begin{note}
\tags{}
\xplain{closed-subalgebra-b}
\xfield{Any Banach algebra $A$ is a closed subalgebra of $\mathcal B(X)$ for some $X$.}
\begin{field}
WLOG $A$ is unital. For $a \in A$, consider the map
\begin{align*}
L_a : A & \to A \\
b & \mapsto ab
\end{align*}
$L_a \in \mathcal B(A)$ and $\norm{L_a} = \norm a$. Hence
$$L : A \to \mathcal B(A)$$
is a unital isometric homomorphism.
\end{field}
\end{note}
% Lecture 17
\begin{note}
\tags{spectrum}
\xplain{spectrum-compact}
\xfield{Let $A$ be a Banach algebra and let $x \in A$. Then $\sigma_A(x)$ is a compact subset of
$$\{\lambda \in \C \mid \abs\lambda \le \norm x\}$$}
\begin{field}
First, if $\abs\lambda > \norm x$, then $\norm{\frac x\lambda} < 1$ and $1 - \frac x\lambda$ is invertible. So $\lambda 1 - x$ is invertible and $\lambda \nin \sigma_A(x)$.
$\sigma_A(x)$ is the preimage of the closed set $G(A)^c$ under the continuous map $\lambda \mapsto \lambda 1 - x$, hence is closed. Since it is bounded, it is also compact.
\end{field}
\end{note}
\begin{note}
\tags{spectrum}
\xplain{spectrum-nonempty}
\xfield{Let $A$ be a normed algebra and let $x \in A$. Then $\sigma_A(x)$ is nonempty.}
\begin{field}
WLOG $A$ is a Banach algebra. If $\sigma_A(x)$ is empty, then
\begin{align*}
f : \C & \to A \\
\lambda & \mapsto (\lambda 1 - x)^{-1}
\end{align*}
is holomorphic since it is continuous and $f(\lambda) - f(\mu) = (\mu - \lambda)f(\lambda)f(\mu)$, namely
$$\frac{f(\lambda) - f(\mu)}{\lambda - \mu} \underset{\lambda \to \mu}\to -f(\mu)^2$$
Also, as $\abs\lambda \to \infty$,
$$\norm{f(\lambda)} \le \frac 1{\abs\lambda - \norm x} \to 0$$
meaning that $f$ is bounded. By vector-valued Liouville, $f$ is constant, which is clearly nonsense.
\end{field}
\end{note}
\begin{note}
\tags{division-algebra}
\xplain{gelfand-Mazur}
\xfield{Gelfand-Mazur theorem}
\begin{field}
Any complex unital normed division algebra is isomorphic to $\C$.
\begin{proof}
Consider
\begin{align*}
f : \C & \to A \\
\lambda & \mapsto \lambda 1
\end{align*}
$f$ is an isometric homomorphism. Since $\sigma_A(x)$ is nonempty, there is some $\lambda$ such that $\lambda 1 - x$ is not invertible, namely $\lambda 1 = x$ and $f(\lambda) = x$. So $f$ is surjective.
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{spectrum}
\xplain{spectral-mapping-polynomial}
\xfield{Spectral Mapping Theorem for polynomials}
\begin{field}
Let $A$ be a unital Banach algebra, $x \in A$, $p$ a polynomial. Then
$$\sigma_A(p(x)) = p(\sigma_A(x))$$
\begin{proof}
For a fixed $\mu \in \C$, write $\mu - p(z) = c\prod_{i = 1}^n (\lambda_i - z)$ for some $c \ne 0$ and some $\lambda_1, \dots, \lambda_n$. Then
\begin{align*}
\mu \nin \sigma_A(p(x))
& \iff \mu 1 - p(x) = c\prod_{i = 1}^n (\lambda_i 1 - x) \text{ invertible} \\
& \iff \for i,\lambda_i 1 - x \text{ invertible} \\
& \iff \for \lambda \in \sigma_A(x), \for i, \lambda_i \ne \lambda \\
& \iff \for \lambda \in \sigma_A(x), \mu - p(\lambda) \ne 0
\end{align*}
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{spectrum:spectral-radius}
\xplain{spectral-radius-formula}
\xfield{Beurling-Gelfand Spectral Radius Formula}
\begin{field}
$$r_A(x) = \lim_n \norm{x^n}^{1/n} = \inf_n \norm{x^n}^{1/n}$$
\begin{proof}
If $\lambda \in \sigma_A(x)$, then $\lambda^n \in \sigma_A(x^n)$. So $\abs\lambda \le \norm{x^n}^{1/n}$.
Let's show $\frac{x^n}{\lambda^n} \wto 0$ if $\abs\lambda > r_A(x)$. This implies $\norm{x^n}^{1/n} \le C^{1/n}\abs\lambda$ for some $C$. Let $\varphi \in A^*$. Define $f : \C \to \C, \lambda \mapsto \varphi((\lambda 1 - x)^{-1})$. Observe that for all $\abs\lambda > \norm x$ we have the Laurent series
$$f(\lambda) = \frac 1\lambda \sum_{n = 0}^\infty \varphi\left(\frac{x^n}{\lambda^n}\right)$$
By unicity of Laurent series, this also holds for all $\abs\lambda > r_A(x)$, meaning that $\varphi\left(\frac{x^n}{\lambda^n}\right) \to 0$, as wanted.
\end{proof}
\end{field}
\end{note}
% Lecture 18
% Lecture 19
% Lecture 20
% Lecture 21
% Lecture 22
% Lecture 23
% Lecture 24
\end{document}