-
Notifications
You must be signed in to change notification settings - Fork 11
/
config.py
159 lines (130 loc) · 5.23 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import torch
import glob
class Config(object):
def __init__(self):
self.target_task = ['qmsum-latent', # 0: qmsum-latent
'arxiv-latent', # 1: arxiv-latent
'govreport-latent', # 2: govreport-latent
][2]
self.retriever = ['roberta',
][0]
self.retriever_name_or_path = {'roberta': 'roberta-base',
}[self.retriever]
self.generator = ['dynamic-rag',
][0]
self.generator_name_or_path = {'dynamic-rag': 'facebook/bart-large',
}[self.generator]
# Training configuration.
self.max_grad_norm = 1.0
self.cls_lr = 5e-5
self.gen_lr = 5e-5
self.overwrite_cache = False
self.weight_decay = 0.0
self.start_decay = 0
self.max_decay_num = 3
self.no_improvement_decay = 5
self.optimizer = 'adam'
self.filtered_oracle = False
self.early_preprocess = True
self.train_batch_size = 8
self.eval_batch_size = 1
self.test_batch_size = 1
self.gradient_accumulation_steps = 8
assert self.train_batch_size % self.gradient_accumulation_steps == 0
# Miscellaneous.
self.num_workers = 8
self.ROUND = 4
self.seed = [0, 1, 2, 3, 4][0]
self.gpu = torch.cuda.is_available()
# Method-related.
if self.retriever == 'roberta':
self.max_retrieval_len = 512
self.max_chunks = 50
else:
raise NotImplementedError()
if self.target_task in ['qmsum-latent',
]:
self.use_oracle = True
self.use_query = True
self.gen_lr = 1e-6
self.oracle_type = ['greedy',][0]
self.oracle_train = [False, True][1]
if self.oracle_train:
self.hybrid_train = [False, True][1]
self.oracle_test = [False, True][0]
self.loss_alpha = [0, 0.05, 0.1, 1][3]
self.window_size = 0
self.top_k = 20
self.min_length = 100
self.no_repeat_ngram_size = 2
self.max_source_len = 300
self.max_target_len = 600
self.consistency_alpha = [0, 1, 2, 3, 5, 10][1]
self.detach_generator_consistency = [False, True][1]
self.length_penalty = 1
self.save_steps = 100
elif self.target_task in ['arxiv-latent',
]:
self.use_oracle = True
self.use_query = False
self.early_preprocess = False
self.oracle_type = ['greedy', ][0]
self.oracle_train = [False, True][1]
if self.oracle_train:
self.hybrid_train = [False, True][1]
self.oracle_test = [False, True][0]
self.loss_alpha = [0, 0.1, 0.5, 1, 5][2]
self.window_size = 0
self.top_k = 25
self.min_length = 150
self.no_repeat_ngram_size = 3
self.max_source_len = 64
self.max_target_len = 900
self.consistency_alpha = [0, 1, 2, 3, 5, 10, 15][5]
self.detach_generator_consistency = [False, True][1]
self.length_penalty = 1
self.save_steps = 500
elif self.target_task in ['govreport-latent',
]:
self.use_oracle = True
self.use_query = False
self.oracle_type = ['greedy',][0]
self.oracle_train = [False, True][1]
if self.oracle_train:
self.hybrid_train = [False, True][1]
self.oracle_test = [False, True][0]
self.loss_alpha = [0, 0.1, 0.5, 1, 5][2]
self.window_size = 0
self.top_k = 25
self.min_length = 500
self.no_repeat_ngram_size = 5
self.max_source_len = 64
self.max_target_len = 900
self.consistency_alpha = [0, 0.1, 1, 2, 3, 5, 10][2]
self.detach_generator_consistency = [False, True][1]
self.length_penalty = 2.0
self.save_steps = 500
self.retriever_save_steps = 1000
else:
raise ValueError()
# Directories.
self.log_dir = self.model_specific_dir('outputs/logs')
remove_all_under(self.log_dir)
self.save_model_dir = self.model_specific_dir('outputs/saved_model')
self.sample_dir = self.model_specific_dir('outputs/sampled_results')
self.tmp_dir = self.model_specific_dir('outputs/temp_results')
def model_specific_dir(self, root):
""" model-normalization """
directory = {
'qmsum-latent': 'QMSum-DYLE',
'arxiv-latent': 'ArXiv-DYLE',
'govreport-latent': 'GovReport-DYLE',
}[self.target_task]
ret = os.path.join(root, directory)
if not os.path.exists(ret):
os.mkdir(ret)
return ret
def remove_all_under(directory):
for file in glob.glob(os.path.join(directory, '*')):
os.remove(file)