forked from dragomirradev/UnifiedSKG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
223 lines (187 loc) · 9.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import logging
import os
import time
import torch
import datasets
import transformers
from transformers import (
HfArgumentParser,
set_seed,
EarlyStoppingCallback,
)
from transformers.trainer_utils import get_last_checkpoint
from collections import OrderedDict
import utils.tool
from utils.configue import Configure
from utils.dataset import TokenizedDataset
from utils.trainer import EvaluateFriendlySeq2SeqTrainer
from utils.training_arguments import WrappedSeq2SeqTrainingArguments
# Huggingface realized the "Seq2seqTrainingArguments" which is the same with "WrappedSeq2SeqTrainingArguments"
# in transformers==4.10.1 during our work.
logger = logging.getLogger(__name__)
def main() -> None:
os.environ[
'CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # Deterministic behavior of torch.addmm. Please refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility
torch.set_deterministic(True)
# Initialize the logger
logging.basicConfig(level=logging.INFO)
from filelock import FileLock
import nltk
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
nltk.download("stopwords", quiet=True)
# Get args
parser = HfArgumentParser((WrappedSeq2SeqTrainingArguments,))
training_args, = parser.parse_args_into_dataclasses()
set_seed(training_args.seed)
args = Configure.Get(training_args.cfg)
if 'checkpoint-???' in args.bert.location:
args.bert.location = get_last_checkpoint(
os.path.dirname(args.bert.location.model_name_or_path))
logger.info(f"Resolve model_name_or_path to {args.bert.location.model_name_or_path}")
if "wandb" in training_args.report_to and training_args.local_rank <= 0:
import wandb
init_args = {}
if "MLFLOW_EXPERIMENT_ID" in os.environ:
init_args["group"] = os.environ["MLFLOW_EXPERIMENT_ID"]
wandb.init(
project=os.getenv("WANDB_PROJECT", "uni-frame-for-knowledge-tabular-tasks"),
name=training_args.run_name,
entity=os.getenv("WANDB_ENTITY", 'sgtnew'),
**init_args,
)
wandb.config.update(training_args, allow_val_change=True)
# Detect last checkpoint
last_checkpoint = None
if os.path.isdir(
training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
os.makedirs(training_args.output_dir, exist_ok=True)
# The inputs will be train, dev, test or train, dev now.
# We deprecate the k-fold cross-valid function since it causes too many avoidable troubles.
if not args.arg_paths:
cache_root = os.path.join('output', 'cache')
os.makedirs(cache_root, exist_ok=True)
raw_datasets_split: datasets.DatasetDict = datasets.load_dataset(path=args.dataset.loader_path,
cache_dir=args.dataset.data_store_path)
seq2seq_dataset_split: tuple = utils.tool.get_constructor(args.seq2seq.constructor)(args).to_seq2seq(
raw_datasets_split, cache_root)
else:
cache_root = os.path.join('output', 'cache')
os.makedirs(cache_root, exist_ok=True)
meta_tuning_data = {}
for task, arg_path in args.arg_paths:
task_args = Configure.Get(arg_path)
task_args.bert = args.bert
print('task_args.bert.location:', task_args.bert.location)
task_raw_datasets_split: datasets.DatasetDict = datasets.load_dataset(
path=task_args.dataset.loader_path,
cache_dir=task_args.dataset.data_store_path)
task_seq2seq_dataset_split: tuple = utils.tool.get_constructor(task_args.seq2seq.constructor)(task_args).\
to_seq2seq(task_raw_datasets_split, cache_root)
meta_tuning_data[arg_path] = task_seq2seq_dataset_split
seq2seq_dataset_split: tuple = utils.tool.get_constructor(args.seq2seq.constructor)(args).\
to_seq2seq(meta_tuning_data)
evaluator = utils.tool.get_evaluator(args.evaluate.tool)(args)
model = utils.tool.get_model(args.model.name)(args)
model_tokenizer = model.tokenizer
seq2seq_train_dataset, seq2seq_eval_dataset, seq2seq_test_dataset = None, None, None
if len(seq2seq_dataset_split) == 2:
seq2seq_train_dataset, seq2seq_eval_dataset = seq2seq_dataset_split
elif len(seq2seq_dataset_split) == 3:
seq2seq_train_dataset, seq2seq_eval_dataset, seq2seq_test_dataset = seq2seq_dataset_split
else:
raise ValueError("Other split not support yet.")
# We wrap the "string" seq2seq data into "tokenized tensor".
train_dataset = TokenizedDataset(args, training_args, model_tokenizer,
seq2seq_train_dataset) if seq2seq_train_dataset else None
eval_dataset = TokenizedDataset(args, training_args, model_tokenizer,
seq2seq_eval_dataset) if seq2seq_eval_dataset else None
test_dataset = TokenizedDataset(args, training_args, model_tokenizer,
seq2seq_test_dataset) if seq2seq_test_dataset else None
# Initialize our Trainer
early_stopping_callback = EarlyStoppingCallback(early_stopping_patience=args.seq2seq.patience if args.seq2seq.patience else 5)
trainer = EvaluateFriendlySeq2SeqTrainer(
args=training_args,
model=model,
evaluator=evaluator,
# We name it "evaluator" while the hugging face call it "Metric",
# they are all f(predictions: List, references: List of dict) = eval_result: dict
tokenizer=model_tokenizer,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
eval_examples=seq2seq_eval_dataset,
wandb_run_dir=wandb.run.dir if "wandb" in training_args.report_to and training_args.local_rank <= 0 else None,
callbacks=[early_stopping_callback],
)
print('Trainer build successfully.')
# Load model weights (for --do_train=False or post finetuning).
if training_args.load_weights_from:
state_dict = torch.load(os.path.join(training_args.load_weights_from, transformers.WEIGHTS_NAME), map_location="cpu")
trainer.model.load_state_dict(state_dict, strict=True)
# release memory
del state_dict
if args.load_multiple_prefix_module_weights_from:
reconstruct_state_dict = OrderedDict()
# load prefix modules
for task_name, module_weight_location in args.load_multiple_prefix_module_weights_from:
state_dict = torch.load(os.path.join(module_weight_location, transformers.WEIGHTS_NAME), map_location="cpu")
MULTI_PREFIX_ATTR_NAME = "multi_prefix"
for weight_name, stored_tensor in state_dict.items():
if str(weight_name).startswith("pretrain_model"):
continue # skip the pretrained model and we will load a new one from another place
reconstruct_state_dict['{}.{}.{}'.format(MULTI_PREFIX_ATTR_NAME, "_".join(task_name.split("_")[:-1]), weight_name)] = stored_tensor
# extract the prefix part and add them to dict
# give it into the model
trainer.model.load_state_dict(reconstruct_state_dict, strict=False)
# release memory
del reconstruct_state_dict
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = len(train_dataset)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
metric_key_prefix="eval"
)
max_eval_samples = len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(
test_dataset=test_dataset if test_dataset else eval_dataset,
test_examples=seq2seq_test_dataset if seq2seq_test_dataset else seq2seq_eval_dataset,
metric_key_prefix="predict"
)
metrics = predict_results.metrics
max_predict_samples = len(test_dataset)
metrics["predict_samples"] = min(max_predict_samples, len(test_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if __name__ == "__main__":
main()