-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw14.tex
614 lines (553 loc) · 27.8 KB
/
hw14.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
\documentclass[12pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\textheight=9.5in \voffset=-1.0in \textwidth=6.5in \hoffset=-0.5in
\parskip=0pt
\def\del{{\partial}}
\begin{document}
\begin{center}
{\large\bf HW14 for Advanced Particle Physics} \\
\end{center}
\vskip 0.2 in
Dear students,
This week, I introduce the Dirac fermion and its equation of motion
(the Dirac equation) as a set of two Weyl fermions, $\psi_L$ and $\psi_R$,
which couple with the Lorentz invariant mass term. We proved the
Lorentz invariance of the Dirac Lagrangian, and the Lorentz covariance
of Dirac equation. We showed how a set of two Weyl fermions and their
e.o.m.'s can be combined into one four-spinor, called Dirac spinor,
and its equation, called Dirac equation.
We are now ready to learn QFT (Quantum Field Theory), in which all
the fields that appear in the Lagrangian should be regarded as
operators which creat and annihilate particles and anti-particles.
QFT is the only known theory which satisfies both the requirement
of quantum mechanics (that ensures the stability of atoms) and
Lorentz invariance of physics. You should master QFT since it is
the language with which particle physicists communicate with nature.
Let us start again from the Dirac equations:
\begin{eqnarray}
&& i\del_\mu \sigma_-^\mu \psi_L - m \psi_R = 0 \label{eq.14_1a} \\
&& i\del_\mu \sigma_+^\mu \psi_R - m \psi_L = 0 \label{eq.14_1b}
\end{eqnarray}
We multiply Eq.\ref{eq.14_1a} by $-i\del_\nu \sigma_+^\nu$ and find
\begin{eqnarray}
&& -i\del_\nu \sigma_+^\nu
(i\del_\mu \sigma_-^\mu \psi_L - m \psi_R) = 0 \label{eq.14_2a} \\
&& \del_\nu \del_\mu \sigma_+^\nu \sigma_-^\mu \psi_L
+i\del_\nu \sigma_+^\nu m \psi_R = 0 \label{eq.14_3a}
\end{eqnarray}
By using Eq.\ref{eq.14_1b}, the above equation becomes
\begin{eqnarray}
[\del_\nu \del_\mu \sigma_+^\nu \sigma_-^\mu + m^2] \psi_L = 0. \label{eq.14_4a}
\end{eqnarray}
Now, by using the symmtric summation of $\nu$ and $\mu$ indices and the
properties of $\sigma$ matrices,
\begin{eqnarray}
\del_\nu \del_\mu \sigma_+^\mu \sigma_-^\nu
= \frac{1}{2} \del_\nu \del_\mu
(\sigma_+^\mu \sigma_-^\nu + \sigma_+^\nu \sigma_-^\mu)
= \frac{1}{2} \del_\nu \del_\mu { 2 g^{\mu\nu} }
= \del_\nu \del_\mu g^{\mu\nu}
= \del_\mu \del^\mu \label{eq.14_5a}
\end{eqnarray}
we find
\begin{eqnarray}
[ \del_\mu \del^\mu + m^2 ] \psi_L = 0. \label{eq.14_6a}
\end{eqnarray}
{\bf hw14-1}: Please show Eq.(\ref{eq.14_3a}, \ref{eq.14_4a}, \ref{eq.14_5a}, \ref{eq.14_6a}).
{\bf hw14-2}: Please multiply Eq.\ref{eq.14_1b} by $-i \del_\nu \sigma_-^\nu$, and obtain the Klein-Gordon equation (Eq.\ref{eq.14_6a}) for $\psi_R$.
\begin{eqnarray}
&& [ \del_\mu \del^\mu + m^2 ] \psi_L = 0,\label{eq.14_6a2} \\
&& [ \del_\mu \del^\mu + m^2 ] \psi_R = 0. \label{eq.14_6b}
\end{eqnarray}
Since both $\psi_L(x)$ and $\psi_R(x)$ satisfy the same Klein-Gordon
equations, both of them have two solutions
\begin{eqnarray}
&& e^{-i px} = e^{-i (Et -xp_x -yp_y -zp_z)} = e^{-i(Et -{\vec p}\cdot {\vec x})} \label{eq.14_7a} \\
&& e^{+i px} = e^{+i (Et -xp_x -yp_y -zp_z)} = e^{+i(Et -{\vec p}\cdot {\vec x})} \label{eq.14_7b}
\end{eqnarray}
where ${\vec p} = (p_x,p_y,p_z)^T$ and ${\vec x} = (x,y,z)^T$, and
\begin{eqnarray}
E = \sqrt{ p_x^2 + p_y^2 + p_z^2 + m^2 }
= \sqrt{{\vec p} \cdot {\vec p} + m^2 } \label{eq.14_8}
\end{eqnarray}
{\bf hw14-3}: Show that both $e^{-ipx}$ in Eq.\ref{eq.14_7a} and $e^{ipx}$ in Eq.\ref{eq.14_7b} are solutions of
an arbitrary Klein Gordon equations:
\begin{eqnarray}
[ \del_\mu \del^\mu + m^2 ] \phi(x) = 0. \label{eq.14_9}
\end{eqnarray}
hint: By noting
\begin{eqnarray}
\del_\mu \del^\mu
= \left (\frac{\del}{\del t}\right)^2 -\left (\frac{\del}{\del x}\right)^2-\left (\frac{\del}{\del y}\right)^2-\left (\frac{\del}{\del z}\right)^2 \label{eq.14_10}
\end{eqnarray}
apply each differntial operators to $e^{\pm ipx}$, and then sum all
the 4 contributions.
Therefore, we can expand (Fourier transform) an arbitrary solutions
of the Klein-Gordon equation (Eq.\ref{eq.14_9}) as
\begin{eqnarray}
\phi(x) = \int d^3p [A(p) e^{-ipx} + B(p) e^{ipx}] \label{eq.14_11}
\end{eqnarray}
where $A(p)$ and $B(p)$ may be called ``Fourier transform'' of $\phi(x)$ in
the momentum space.
Now the so-called ``negative energy solution problem'' is that the
solution $e^{ipx}$ has negative energy.
{\bf hw14-4}: Please obtain the energy of the wave function $e^{-ipx}$ and
$e^{ipx}$ by using the Shroedinger equations:
\begin{eqnarray}
i\frac{d}{dt} \psi(x) = H \psi(x) \label{eq.14_12}
\end{eqnarray}
when $p^0 = E$ in Eq.\ref{eq.14_8}. Please confirm that $H=E$ for $e^{-ipx}$, while $H=-E$ for $e^{ipx}$.
[Historically, Dirac tried to solve this negative energy problem of
relativistic quantum mechanics by thinking the following way:
The Klein-Gordon equation has negative energy problem because it is
a double differential equations, as written explicitly in Eq.\ref{eq.14_9}.
If we obtain a covariant equation of motion which is linear in
the time derivative, this problem may be solved. With this motivation,
he found a 4-spinor wave function, whose covariant equation of motion
is linear in the time derivative, Eq.(\ref{eq.14_1a},\ref{eq.14_1b}). Unfortunately, as we showed above, his wave functions automatically satisfy the Klein-Gordon equation, and hence he could not solve the negative-energy problem.
This problem is solved by quantum field theory (QFT), in which all
the wave functions are re-interpreted as a set of creation and
annihilation operators. Dirac did not give up his original motivation,
and found his famous `hole theory', which works only for fermions
since it makes use of Fermi statistics to define the `vacuum' filled
by the sea of electrons. His hole theory turns out to be extremely
useful and powerful in material sciences where the `sea' of electrons
gives a good approximation for the ground state.]
In QFT, the Fourier transform of $\phi(x)$ in Eq.\ref{eq.14_11} is expressed as
\begin{eqnarray}
\phi(x) = \int \frac{d^3p}{2E(2\pi)^3} (a(p) e^{-ipx} + b(p)^\dagger e^{ipx}) \label{eq.14_13}
\end{eqnarray}
Please note that the only essential change made is that the ``Fourier
transform'' $A(p)$ and $B(p)$ are now regarded as $a(p)$, an operator which
annihilates a particle with 3-momentum $p=\vec p$, and as $b(p)^\dagger$, an
operator which creats its anti-particle with 3-momentum $p=\vec p$.
The creation and annihilation operators are defined by the following
sets of commutators (recall the Harmonic oscillators in QM):
\begin{eqnarray}
&&[ a({\vec p}), a^\dagger({\vec k}) ] = (2\pi)^3 2E \delta^3({\vec p}-{\vec k}) \label{eq.14_14a} \\
&&[ b({\vec p}), b^\dagger({\vec k}) ] = (2\pi)^3 2E \delta^3({\vec p}-{\vec k}) \label{eq.14_14b} \\
&& [ a({\vec p}), b^\dagger({\vec k}) ]= [a({\vec p}), a({\vec k}) ]=[b({\vec p}), b({\vec k}) ]=0 \label{eq.14_14c}
\end{eqnarray}
With this re-interpretation, the one-particle state with momentum
${\vec k}$ can be obtained from the vacuum by applying
\begin{eqnarray}
\ket{particle,~{\vec k}}= a^\dagger({\vec k}) \ket{0} \label{eq.14_15}
\end{eqnarray}
and its wave function can be expressed as
\begin{eqnarray}
\bra{0} \phi(x) \ket{particle,~{\vec k}}= e^{-ikx} \label{eq.14_16}
\end{eqnarray}
where $k^0 = E = \sqrt{ m^2 + {\vec k}^2 }$, by using the commutators
{\bf hw14-5}: Show Eq.\ref{eq.14_16}.
{\bf hw14-6}: Please note the Lorentz invariance of the Fourier transform
measure in Eq.\ref{eq.14_13} and in the normalization of the commutators in Eq.(\ref{eq.14_14a},\ref{eq.14_14b},\ref{eq.14_14c}),
by following the steps Eq.\ref{eq.14_17} to Eq.(\ref{eq.14_18a},\ref{eq.14_18b},\ref{eq.14_18c}) below:
\begin{eqnarray}
d^4 p \delta( p^2 - m^2 ) \Theta(p^0)
&=&dp^0dp^1dp^2dp^3 \delta((p^0)^2-(p^1)^2-(p^2)^2-(p^3)^2-m^2) \Theta(p^0) \nonumber \\
&=&dp^0dp^1dp^2dp^3 \delta( (p^0)^2 -E^2 ) \Theta(p^0) \nonumber\\
&=&dp^0dp^1dp^2dp^3 \delta( (p^0-E) (p^0+E) ) \Theta(p^0)\nonumber\\
&=&dp^0dp^1dp^2dp^3 \delta( (p^0-E) (2E) ) \Theta(p^0) \nonumber\\
&=& dp^1dp^2dp^3/2E
= d^3 p/2E \label{eq.14_17}
\end{eqnarray}
where we used the definition Eq.\ref{eq.14_8} of $E >0$. The Lorentz invariance of the first line of Eq.\ref{eq.14_17} can be shown by noting
\begin{eqnarray}
&&d^4 p \to d^4 p' = det(L) d^4 p = d^4 p,~where~p'=Lp \label{eq.14_18a}\\
&&p^2 - m^2 \to p'^2 - m^2 = p^2 - m^2 \label{eq.14_18b} \\
&&{\text sign~ of~ p^0 ~can~ never~ change~ under~} p \to p'=Lp\label{eq.14_18c}
\end{eqnarray}
Are the above conditions clear to you?
As for the one-antiparticle state with three-momentum $\vec{k}$,
\begin{eqnarray}
\ket{anti-particle,~{\vec k}}=b ^\dagger({\vec k}) \ket{0},\label{eq.14_19}
\end{eqnarray}
its wave function is obtained by
\begin{eqnarray}
\bra{0} \phi(x)^* \ket{anti-particle,~{\vec k}}= e^{-ikx} \label{eq.14_20}
\end{eqnarray}
by using the same commutators Eq.(\ref{eq.14_14a},\ref{eq.14_14b},\ref{eq.14_14c}).
{\bf hw14-7}: Show Eq.\ref{eq.14_20} by using the commutators Eq.(\ref{eq.14_14a},\ref{eq.14_14b},\ref{eq.14_14c}).
The negative-energy problem is thus solved in QFT. From this very
foundation of QFT, we can tell that the particle and the anti-particle
should have exactly the same invariant mass.
In case of a real scalar boson (like the Higgs boson), the particle
and the anti-particle are the same, and we express
\begin{eqnarray}
H(x) = \int \frac{d^3p}{2E(2\pi)^3} [a(p) e^{-ipx} + a^\dagger(p) e^{ipx}]\label{eq.14_21}
\end{eqnarray}
by using the operators $a(p)$ and $a^\dagger(p)$ only, such that
\begin{eqnarray}
H^\dagger(x) = H(x). \label{eq.14_22}
\end{eqnarray}
Please do note here that even though the Higgs field operator is
Hermetian (Eq.\ref{eq.14_22}), and we call Higgs field as a real field, its one particle wave function, $e^{-ipx}$, is complex, since it is a solution
of the Shreodinger (Klein-Gordon) equation. We cannot change the
phase of the Higgs field
\begin{eqnarray}
H(x) \to H(x)' = e^{iQ\theta} H(x) \label{eq.14_23}
\end{eqnarray}
for any $Q \neq 0$, because of its Hermeticity (Eq.\ref{eq.14_22}).
In case of Dirac fermion, the free field expansion is written as
\begin{eqnarray}
&&\psi_L(x)
= \sum_{h=\pm1/2} \int \frac{d^3p}{2E(2\pi)^3}
{a({\vec p},h) e^{-ipx} u_L({\vec p},h) +b^\dagger({\vec p},h) e^{ipx} v_L({\vec p},h)} \label{eq.14_24a}\\
&&\psi_R(x)
= \sum_{h=\pm1/2} \int \frac{d^3p}{2E(2\pi)^3}
{a({\vec p},h) e^{-ipx} u_R({\vec p},h) +b^\dagger({\vec p},h) e^{ipx} v_R({\vec p},h)}\label{eq.14_24b}
\end{eqnarray}
where the annihilation and creation operators satisfy the
anti-commutation relations,
\begin{eqnarray}
{ a({\vec p},h), a({\vec k},h')^\dagger }
= { b({\vec p},h), b({\vec k},h')^\dagger }
= \delta_{h,h'} (2\pi)^3 2E \delta^3( {\vec p} - {\vec k} ) \label{eq.14_25}
\end{eqnarray}
and all the other combinations anti-commute. With this normalization,
the one-particle state wave functions are
\begin{eqnarray}
&&\bra{0} \psi_L(x) a({\vec k},h)^\dagger \ket{0}=e^{-ikx} u_L(k,h)\label{eq.14_26a} \\
&&\bra{0} \psi_R(x) a({\vec k},h)^\dagger \ket{0}=e^{-ikx} u_R(k,h)\label{eq.14_26b}
\end{eqnarray}
for a particle, and
\begin{eqnarray}
&& \bra{0} \psi_L(x)^\dagger b({\vec k},h)^\dagger \ket{0}=e^{-ikx} v_L(k,h)\label{eq.14_27a} \\
&&\bra{0} \psi_R(x)^\dagger b({\vec k},h)^\dagger \ket{0}=e^{-ikx} v_R(k,h)\label{eq.14_27b}
\end{eqnarray}
for an anti-particle. The extra wave functions, $u_L$, $u_R$, $v_L$, $v_R$,
describe the Lorentz transformation property of the spin $1/2$ fields.
By using the Dirac equation, Eq.(\ref{eq.14_1a},\ref{eq.14_1b}), we find their e.o.m.'s:
\begin{eqnarray}
&&k_\mu \sigma_-^\mu u_L(k,h) = m u_R(k,h) \label{eq.14_28a} \\
&& k_\mu \sigma_+^\mu u_R(k,h) = m u_L(k,h) \label{eq.14_28b}
\end{eqnarray}
for $u$-spinors, and
\begin{eqnarray}
&& -k_\mu v_L(k,h)^\dagger \sigma_-^\mu = m v_R(k,h)^\dagger \label{eq.14_29a} \\
&& -k_\mu v_R(k,h)^\dagger \sigma_-^\mu = m v_L(k,h)^\dagger \label{eq.14_29b}
\end{eqnarray}
for v-spinors. Eq.(\ref{eq.14_29a},\ref{eq.14_29b}) can also be written as
\begin{eqnarray}
&&-k_\mu \sigma_-^\mu v_L(k,h) = m v_R(k,h) \label{eq.14_29c}\\
&& -k_\mu \sigma_+^\mu v_R(k,h) = m v_L(k,h) \label{eq.14_29d}
\end{eqnarray}
{\bf hw14-8}: Derive Eq.(\ref{eq.14_28a},\ref{eq.14_28b}) and Eq.(\ref{eq.14_29a},\ref{eq.14_29b}) by using Dirac eqation Eq.(\ref{eq.14_1a},\ref{eq.14_1b}) for the one particle/anti-particle state in Eq.(\ref{eq.14_26a},\ref{eq.14_26b}) and Eq.(\ref{eq.14_27a},\ref{eq.14_27b}).
The particle and anti-particle states in Eq.(\ref{eq.14_26a},\ref{eq.14_26b}) and Eq.(\ref{eq.14_27a},\ref{eq.14_27b}), respectively,
and their e.o.m.'s Eq.(\ref{eq.14_28a},\ref{eq.14_28b}) vs Eq.(\ref{eq.14_29a},\ref{eq.14_29b}), look asymmetric in this formulation.
In fact, we can show that Dirac equations (and hence QED and QCD)
are invariant under the exchange of particle and anti-partilce
(Charge conjugation).
Now, let us study the last remaining important subject about fermion;
the charge conjugation transformations.
\begin{eqnarray}
&& \psi_L(x) \to \psi_L(x)^c = (-i\sigma^2) \psi_L(x)^* \label{eq.14_30a}\\
&& \psi_R(x) \to \psi_R(x)^c = (+i\sigma^2) \psi_R(x)^* \label{eq.14_30b}
\end{eqnarray}
{\bf hw14-9}: Please confirm that with the above definitions, where the sign
of $i\sigma^2$ term is opposite between $\psi _L^c$ and $\psi _R^c$, the
double chanrge conjugations give the original fields:
\begin{eqnarray}
&& (\psi_L(x)^c)^c = \psi_L(x) \label{eq.14_31a}\\
&& (\psi_R(x)^c)^c = \psi_R(x) \label{eq.14_31b}
\end{eqnarray}
By applying the above transformations Eq.(\ref{eq.14_30a},\ref{eq.14_30b}) to our free field expansions
Eq.(\ref{eq.14_24a},\ref{eq.14_24b}), and by requiring that
\begin{eqnarray}
&& \psi_L(x)^c = \psi_R(x) \label{eq.14_32a}\\
&& \psi_R(x)^c = \psi_L(x) \label{eq.14_32b}
\end{eqnarray}
we obtain v-spinors from the $u$-spinors. Please note that the condition
Eq.(\ref{eq.14_32a},\ref{eq.14_32b}) is valid only for Majorana fermions. In general, $v$-spinors can
have independent phase from the $u$-spinors, and their relative phase
is un-observable as long as the fermion number is conserved. We fix
the relative phase between u-spinors and $v$-spinors by using the Majorana
conditions Eq.(\ref{eq.14_32a},\ref{eq.14_32b}), so that we can use the same spinors for both Dirac and Majorana fermions.
[When I introduced with Dieter Zeppenfeld a numerical program to
calculate helicity amplitudes in 1985 (HZ:NPB274(1986)1), we did not
use the condition Eq.(\ref{eq.14_32a},\ref{eq.14_32b}) to fix our $v$-spinors. When I applied the
formalism to supersymmetric models with Howard Baer and Xerxes Tata
in the same year (BHT:PRL57(1986)294), we encountered inconsistency
between our convention and the conditions Eq.(\ref{eq.14_32a},\ref{eq.14_32b}) imposed for Majorana
fermions, such as SUSY partners of neutral gauge and Higgs bosons.
We fixed the $v$-spinor conventions before the HZ paper was published,
and hence the inconsistent version is no more available.]
{\bf hw14-10}: From the free-field expansions Eq.\ref{eq.14_24a} and Eq.\ref{eq.14_24b}, please obtain
the expansions for $\psi_L(x)^c$ in Eq.\ref{eq.14_33a}, and $\psi_R^c(x)$ in Eq.\ref{eq.14_33b}:
\begin{eqnarray}
&& \psi_L(x)^c
= \sum_{h=\pm1/2} \int \frac{d^3p}{2E(2\pi)^3}
{a^\dagger({\vec p},h) e^{ipx} u_L^c({\vec p},h) +b({\vec p},h) e^{-ipx} v_L^c({\vec p},h)} \label{eq.14_33a} \\
&& \psi_R(x)^c
= \sum_{h=\pm1/2} \int \frac{d^3p}{2E(2\pi)^3}
{a^\dagger({\vec p},h) e^{ipx} u_R^c({\vec p},h) +b({\vec p},h) e^{-ipx} v_R^c({\vec p},h)} \label{eq.14_33b}
\end{eqnarray}
{\bf hw14-11}: Show that the requirement Eq.(\ref{eq.14_32a},\ref{eq.14_32b}) tells
\begin{eqnarray}
&& v_R({\vec p},h) = u_L(p,h)^c = (-i\sigma^2) u_L(p,h)^* \label{eq.14_34a} \\
&& v_L({\vec p},h) = u_R(p,h)^c = (+i\sigma^2) u_R(p,h)^* \label{eq.14_34b}
\end{eqnarray}
The operators $\psi_L^c(x)$ and $\psi_R^c(x)$ Eq.(\ref{eq.14_33a},\ref{eq.14_33b}) annihilate an
anti-particle, and create a particle. The role of a particle and
an anti-particle is inter-changed between the original field operators
$\psi_L$ and $\psi_R$, and in the Charge conjugated operators
$\psi_L^c$ and $\psi_R^c$. We show at the bottom of this homework
that the Dirac Lagrangian is symmetric under Charge conjugation.
Let us insert an excercise here, so that you know how $u$-spinors and
$v$-spinors transform under Lorentz transformation. Because $v$-spinors
are obtained from $u$-spinors by charge conjugations Eq.(\ref{eq.14_34a},\ref{eq.14_34b}), we study
the Lorentz transformation of $u$-spinors only.
{\bf hw14-12} First, show that the Dirac equation Eq.(\ref{eq.14_1a},\ref{eq.14_1b}) in the fermion rest frame
\begin{eqnarray}
p^\mu = (m,0,0,0)^T \label{eq.14_35}
\end{eqnarray}
tells that $u_L$ and $u_R$ spinors should be identical:
\begin{eqnarray}
u_L(p,h) = u_R(p,h). \label{eq.14_36}
\end{eqnarray}
In the rest frame, we choose the $z$-axis along the direction of the
three momentum in the observer's frame, such that the helicity
\begin{eqnarray}
h = \frac {\vec{J} \cdot \vec{p}}{|\vec{p}|}, \label{eq.14_37}
\end{eqnarray}
reduces to $J_z$. In this way, we obtain the wave function which satisfy
\begin{eqnarray}
&&J_z u_L(p,h) = \frac{\sigma^3}{2} u_L(p,h) = h u_L(p,h) \label{eq.14_38a} \\
&& J_z u_R(p,h) = \frac{\sigma^3}{2} u_R(p,h) = h u_R(p,h) \label{eq.14_38b}
\end{eqnarray}
with $h=\pm 1/2$. The solution is,
\begin{eqnarray}
&& u_L(p,+1/2) = u_R(p,+1/2) =\sqrt{m}
\begin{pmatrix}
1\\0
\end{pmatrix} \label{eq.14_39a}\\
&& u_L(p,-1/2) = u_R(p,-1/2) =\sqrt{m}
\begin{pmatrix}
0\\ 1
\end{pmatrix} \label{eq.14_39b}
\end{eqnarray}
{\bf hw14-13}: Show that Eq.(\ref{eq.14_39a},\ref{eq.14_39b}) are the solutions of the Dirac equation Eq.(\ref{eq.14_1a},\ref{eq.14_1b})
in the rest frame and the quantization condition Eq.(\ref{eq.14_38a},\ref{eq.14_38b}).
Let us now study how the wave functions Eq.(\ref{eq.14_39a},\ref{eq.14_39b}) changed by Lorentz transformations. We first make a boost along the positive $z$ axis by the positive rapidity $y$ (so that $h$ becomes the helicity):
\begin{eqnarray}
p^\mu \to p'^\mu &=& L(0,0,0,0,0,\eta_3=y) p^\mu
= e^{ -iy K_3 } p^\mu \\
&=& m( \cosh y, 0, 0, \sinh y )^T
= m( \gamma, 0, 0, \gamma\beta )^T \\
&=& (E, 0, 0, p )^T \label{eq.14_40}
\end{eqnarray}
and the spinors transform as
\begin{eqnarray}
u_L(p,+1/2) \to u_L'(p',+1/2)
&=& S_L(0,0,0,0,0,\eta_3=y) u_L(p,+1/2) \\
&=& e^{ \frac{\sigma^3}{2} (-y) } \sqrt{m}
\begin{pmatrix}
1\\0
\end{pmatrix}
=
\begin{pmatrix}
e^{-y/2} & 0\\
0 & e^{y/2}
\end{pmatrix}
\sqrt{m}
\begin{pmatrix}
1\\0
\end{pmatrix}\\
&=&\sqrt{E-p}
\begin{pmatrix}
1\\0
\end{pmatrix} \label{eq.14_41a} \\
u_L(p,-1/2) \to u_L'(p',-1/2)&=& \sqrt{E+p}
\begin{pmatrix}
0 \\ 1
\end{pmatrix} \label{eq.14_41b} \\
u_R(p,+1/2) \to u_R'(p',+1/2) &=&
S_R(0,0,0,0,0,\eta_3=y) u_R(p,+1/2) \\
&=& e^{ \frac{\sigma^3}{2} (+y) } \sqrt{m}
\begin{pmatrix}
1\\0
\end{pmatrix}
=
\begin{pmatrix}
e^{y/2} & 0\\
0 & e^{-y/2}
\end{pmatrix}
\sqrt{m}
\begin{pmatrix}
1\\0
\end{pmatrix}\\
&=& \sqrt{E+p}
\begin{pmatrix}
1\\0
\end{pmatrix} \label{eq.14_41c} \\
u_R(p,-1/2) \to u_R'(p',-1/2)&=& \sqrt{E-p}
\begin{pmatrix}
0 \\ 1
\end{pmatrix} \label{eq.14_41d}
\end{eqnarray}
{\bf hw14-14}: Show Eq.\ref{eq.14_40} and Eq.(\ref{eq.14_41a},\ref{eq.14_41b},\ref{eq.14_41c},\ref{eq.14_41d}).
Please observe that in the massless limit, E=p, only the two helicity
components survive:
\begin{eqnarray}
&& u_L(p,-1/2) = \sqrt{2E}
\begin{pmatrix}
0 \\ 1
\end{pmatrix} \label{eq.14_42a}\\
&&u_R(p,+1/2) = \sqrt{2E}
\begin{pmatrix}
1\\0
\end{pmatrix} \label{eq.14_42b}
\end{eqnarray}
The other two combinations vanish in the massless limit ( $m=0$, or $E=p$)
\begin{eqnarray}
u_L(p,+1/2) = u_R(p,-1/2) = 0 \label{eq.14_43}
\end{eqnarray}
reproducing the results we obtained for Weyl fermions. We may note that
in the massless (high energy) limit, only the left-handed (right-handed)
chirality component survives for the helicity $-1/2$ ($+1/2$) states.
Let us further operate $R_y(\theta)$ and then $R_z(\phi)$ in order to obtain
the most general form of free fermion wave functions. In the frame
where the fermion momentum takes the generic form:
\begin{eqnarray}
&&p^\mu \to p{'''}^\mu
= R_z(\phi) R_y(\theta) B_z(y) p^\mu
= R_z(\phi) R_y(\theta) m ( \cosh y, 0, 0, \sinh y )^T \\
&=& R_z(\phi) R_y(\theta) ( E, 0, 0, p )^T
= R_z(\phi) ( E, p\sin\theta, 0, p\cos\theta )^T \\
&=& ( E, p\sin\theta\cos\phi, p\sin\theta\sin\phi, p\cos\theta )^T\label{eq.14_44}
\end{eqnarray}
the wave functions are
\begin{eqnarray}
u_L{'''}(p{'''},+1/2) &=& R_z(\phi)R_y(\theta)B_z(y) p^\mu u_L(p,+1/2)
=\sqrt{E-p}
\begin{pmatrix}
e^{-i\phi/2} \cos\frac{\theta}{2} \\
e^{i\phi/2} \sin\frac{\theta}{2}
\end{pmatrix} \label{eq.14_45a} \\
u_L{'''}(p{'''},-1/2) &=& R_z(\phi)R_y(\theta)B_z(y) p^\mu u_L(p,-1/2)
=\sqrt{E+p}
\begin{pmatrix}
-e^{-i\phi/2} \sin\frac{\theta}{2} \\
e^{i\phi/2} \cos\frac{\theta}{2}
\end{pmatrix} \label{eq.14_45b} \\
u_R{'''}(p{'''},+1/2) &=& R_z(\phi)R_y(\theta)B_z(y) p^\mu u_R(p,+1/2)
= \sqrt{E+p}
\begin{pmatrix}
e^{-i\phi/2} \cos\frac{\theta}{2} \\
e^{i\phi/2} \sin\frac{\theta}{2}
\end{pmatrix} \label{eq.14_45c} \\
u_R{'''}(p{'''},-1/2) &=& R_z(\phi)R_y(\theta)B_z(y) p^\mu u_R(p,-1/2)
= \sqrt{E-p}
\begin{pmatrix}
-e^{-i\phi/2} \sin\frac{\theta}{2} \\
e^{i\phi/2} \cos\frac{\theta}{2}
\end{pmatrix} \label{eq.14_45d}
\end{eqnarray}
Here I introduced a notation for finite Lorentz transformations
\begin{eqnarray}
&&B_z(y) = L(0,0,0,0,0,\eta_3=y) \label{eq.14_46a} \\
&& R_y(\theta) = L(0,\theta_2=\theta,0,0,0,0)\label{eq.14_46b} \\
&& R_z(\phi) = L(0,0,\theta_3=\phi,0,0,0)\label{eq.14_46c}
\end{eqnarray}
for vectors ($4\times 4$ matrices for $p^\mu$ or any $V^\mu$),
\begin{eqnarray}
&& B_z(y) = S_L(0,0,0,0,0,\eta_3=y) \label{eq.14_47a} \\
&& R_y(\theta) = S_L(0,\theta_2=\theta,0,0,0,0) \label{eq.14_47b} \\
&& R_z(\phi) = S_L(0,0,\theta_3=\phi,0,0,0) \label{eq.14_47c}
\end{eqnarray}
for left-handed spinors ($2\times 2$ matrices for $u_L$ or $v_L$),
\begin{eqnarray}
&& B_z(y) = S_R(0,0,0,0,0,\eta_3=y) \label{eq.14_48a} \\
&& R_y(\theta) = S_R(0,\theta_2=\theta,0,0,0,0) \label{eq.14_48b} \\
&& R_z(\phi) = S_R(0,0,\theta_3=\phi,0,0,0) \label{eq.14_48c}
\end{eqnarray}
for right-handed spinors ($2\times 2$ matrices for $u_R$ or $v_R$).
{\bf hw14-15}: Please obtain Eq.(\ref{eq.14_46a}$\to$\ref{eq.14_48c}), and derive Eq.\ref{eq.14_44} and Eq.(\ref{eq.14_45a},\ref{eq.14_45b},\ref{eq.14_45c},\ref{eq.14_45d}).
By using the charge conjugation relations in Eq.(\ref{eq.14_34a},\ref{eq.14_34b}), we obtain the $v$-spinors:
\begin{eqnarray}
&& v_L(p, 1/2) = (+i\sigma^2) u_R^*(p, 1/2) \label{eq.14_49a} \\
&& v_R(p, 1/2) = (-i\sigma^2) u_L^*(p, 1/2) \label{eq.14_49b} \\
&& v_L(p,-1/2) = (+i\sigma^2) u_R^*(p,-1/2) \label{eq.14_49c} \\
&& v_R(p,-1/2) = (-i\sigma^2) u_L^*(p,-1/2) \label{eq.14_49d}
\end{eqnarray}
{\bf hw14-16}: Please obtain explicit form of $v$-spinors Eq.(\ref{eq.14_49a},\ref{eq.14_49b},\ref{eq.14_49c},\ref{eq.14_49d}).
[As I wrote above, the numerical program for the above wave functions
were introduced in 1985 (HZ:NPB274(1986)1), which was later adopted
by HELAS (1991) and by MadGraph (1994). If you read the original
HZ paper, you may notice that we dropped a phase factor $e^{\pm \phi/2}$
in order to make the numerical program simple. This dropped phase
should be recovered when we study Lorentz transformations of the wave
functions (e.g. in the paper EPJC71(2011)1529 where we studied spin
$3/2$ particles), or when we study relative phase among helicity
amplitudes (see e.g. Appendix B of arXiv:1712.09953).]
Now, we show that the Dirac Lagrangian
\begin{eqnarray}
{\cal L}_{Dirac} = \psi_L^\dagger i\del_\mu \sigma_-^\mu \psi_L
+ \psi_R^\dagger i\del_\mu \sigma_+^\mu \psi_R
- m (\psi_L^\dagger \psi_R + \psi_R^\dagger \psi_L) \label{eq.14_50}
\end{eqnarray}
is invariant under Charge conjugation transformations. Because ${\cal L}_{Dirac}$ is a singlet in the spinor space, it is equal to its transpose:
\begin{eqnarray}
{\cal L}_{Dirac}= ( {\cal L}_{Dirac} )^T
= ( \psi_L^\dagger i\del_\mu \sigma_-^\mu \psi_L )^T
+ ( \psi_R^\dagger i\del_\mu \sigma_+^\mu \psi_R )^T
- m ( \psi_L^\dagger \psi_R + \psi_R^\dagger \psi_L )^T\label{eq.14_51}
\end{eqnarray}
Because Fermi-operators anti-commutes,
\begin{eqnarray}
{\cal L}_{Dirac} &=& - i\del_\mu \psi_L^T{\sigma_-^\mu}^T {\psi_L^\dagger}^T - i\del_\mu \psi_R^T{\sigma_+^\mu}^T {\psi_R^\dagger}^T
+ m( \psi_R^T {\psi_L^\dagger}^T + \psi_L^T {\psi_R^\dagger}^T )\\
&=& - i\del_\mu \psi_L^T{\sigma_-^\mu}^T \psi_L^*
- i\del_\mu \psi_R^T {\sigma_+^\mu}^T \psi_R^*
+ m( \psi_R^T \psi_L^* + \psi_L^T \psi_R^* ) \label{eq.14_52}
\end{eqnarray}
{\bf hw14-17}: Confirm Eq.\ref{eq.14_52} is equivalent to Eq.\ref{eq.14_50}.
By ignoring the total derivative terms in ${\cal L}$,
\begin{eqnarray}
{\cal L}_{Dirac}=\psi_L^T{\sigma_-^\mu}^T( i\del_\mu \psi_L^*)+\psi_R^T {\sigma_+^\mu}^T(i\del_\mu \psi_R^*) + m( \psi_R^T \psi_L^* + \psi_L^T \psi_R^* ) \label{eq.14_53}
\end{eqnarray}
{\bf hw14-18}: Confirm Eq.\ref{eq.14_53} is equivalent to Eq.\ref{eq.14_52}.
By inserting $(\sigma^2)^2 = (-i\sigma^2)(i\sigma^2) = 1$ between $\psi$'s
and $\sigma_\pm^\mu$, we find
\begin{eqnarray}
{\cal L}_{Dirac} &=& {\psi_L^c}^\dagger \sigma^2 {\sigma_-^\mu}^T \sigma^2 ( i\del_\mu {\psi_L^c})+{\psi_R^c}^\dagger \sigma^2 {\sigma_+^\mu}^T \sigma^2(i\del_\mu {\psi_R^c}) - m( {\psi_R^c}^\dagger{\psi_L^c} + {\psi_L^c}^\dagger {\psi_R^c}) \label{eq.14_54}
\end{eqnarray}
{\bf hw14-19}: Confirm Eq.\ref{eq.14_54} is equivalent to Eq.\ref{eq.14_53}.
Finally, by noting
\begin{eqnarray}
&&(\sigma^2) {\sigma_-^\mu}^T (\sigma^2) = \sigma_+^\mu \label{eq.14_55a} \\
&& (\sigma^2) {\sigma_+^\mu}^T (\sigma^2) = \sigma_-^\mu \label{eq.14_55b}
\end{eqnarray}
{\bf hw14-20}: Show Eq.(\ref{eq.14_55a},\ref{eq.14_55b}).
we find
\begin{eqnarray}
{\cal L}_{Dirac}= {\psi_L^c}^\dagger i\del_\mu {\sigma_+^\mu} {\psi_L^c}+{\psi_R^c}^\dagger i\del_\mu {\sigma_+^\mu} {\psi_R^c} - m( {\psi_R^c}^\dagger{\psi_L^c} + {\psi_L^c}^\dagger {\psi_R^c})\label{eq.14_56}
\end{eqnarray}
{\bf hw14-21}: Confirm Eq.\ref{eq.14_56} is equivalent to Eq.\ref{eq.14_54}.
Compared to the original $ {\cal L}_{Dirac}$ in Eq.\ref{eq.14_50}, Eq.\ref{eq.14_56} shows that exactly
the same Lagrangian is obtained by the replacements
\begin{eqnarray}
\psi_L \to \psi_R^c, ~~~\psi_R \to \psi_L^c \label{eq.14_57}
\end{eqnarray}
The transformation Eq.\ref{eq.14_57} is called the Charge conjugation transformation. As we showed above, in the charge conjugated field operators, an anti-particle is annihilated, and a particle is created. For instance,
for QED, the field operators
\begin{itemize}
\item $\psi_{L,R}$: annihilate electron, creat positron;
\item $\psi_{L,R}^c$: annihilate positrion, creat electron.
\end{itemize}
The role of the electron and positron are interchanged under the
Charge conjugation transformation.
It is important for you to recognize that the charge-conjugation
relationship is obtained from the simple fact that the Lagrangian
density is a singlet in the spinor space, and hence it is equal
to its transpose, Eq.\ref{eq.14_50}=Eq.\ref{eq.14_51}. Because this is always true, the Charge conjugation plays an important role in the SM and in its extentions.
That's all for hw14.\\
Best regards,\\
Kaoru
\end{document}