-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathattack_model.py
112 lines (99 loc) · 3.95 KB
/
attack_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch.nn as nn
import torch
class ResnetBlock(nn.Module):
def __init__(self, dim, padding_type='reflect', norm_layer=nn.BatchNorm2d, use_dropout=False, use_bias=False):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim),
nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
class Generator(nn.Module):
def __init__(self,
gen_input_nc,
image_nc,
h):
super(Generator, self).__init__()
encoder_lis = [
# MNIST:1*28*28
nn.Conv2d(gen_input_nc, 8, kernel_size=3, stride=1, padding=0, bias=True),
nn.InstanceNorm2d(8),
nn.ReLU(),
# 8*26*26
nn.Conv2d(8, 16, kernel_size=3, stride=2, padding=0, bias=True),
nn.InstanceNorm2d(16),
nn.ReLU(),
# 16*12*12
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=0, bias=True),
nn.InstanceNorm2d(32),
nn.ReLU(),
# 32*5*5
]
bottle_neck_lis = [ResnetBlock(32),
ResnetBlock(32),
ResnetBlock(32),
ResnetBlock(32),]
decoder_lis = [
nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=0, bias=False),
nn.InstanceNorm2d(16),
nn.ReLU(),
# state size. 16 x 11 x 11
nn.ConvTranspose2d(16, 8, kernel_size=3, stride=2, padding=0, bias=False),
nn.InstanceNorm2d(8),
nn.ReLU(),
# state size. 8 x 23 x 23
nn.ConvTranspose2d(8, image_nc, kernel_size=(6-h%2), stride=1, padding=0, bias=False),
nn.Tanh()
# state size. image_nc x 28 x 28
]
decoder_lis2 = [
nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=0, bias=False),
nn.InstanceNorm2d(16),
nn.ReLU(),
# state size. 16 x 11 x 11
nn.ConvTranspose2d(16, 8, kernel_size=3, stride=2, padding=0, bias=False),
nn.InstanceNorm2d(8),
nn.ReLU(),
# state size. 8 x 23 x 23
nn.ConvTranspose2d(8, 2, kernel_size=(6-h%2), stride=1, padding=0, bias=False),
# nn.Tanh()
nn.Sigmoid()
# state size. image_nc x 28 x 28
]
self.encoder = nn.Sequential(*encoder_lis)
self.bottle_neck = nn.Sequential(*bottle_neck_lis)
self.decoder = nn.Sequential(*decoder_lis)
self.decoder2 = nn.Sequential(*decoder_lis2)
def forward(self, x):
x = self.encoder(x)
x = self.bottle_neck(x)
x1 = self.decoder(x)
x2 = self.decoder2(x)
return x2,x1