The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Here we complete the Graph Property Prediction task on molhiv dataset. Details can be found in our paper.
Here, we demonstrate the following performance on the ogbg-molhiv dataset from Stanford Open Graph Benchmark (1.2.5)
Model | Test ROC-AUC | Validation ROC-AUC | Parameters | Hardware |
---|---|---|---|---|
Neural FingerPrints | 0.8232 ± 0.0047 | 0.8331 ± 0.0054 | 2425102 | Tesla V100 (32GB) |
-
Create
conda
environment and installrdkit
>= 2018.09.1 by:conda create -n ogbg_hiv python=3.6 conda activate ogbg_hiv conda install -c conda-forge rdkit
-
Install GPU or CPU version of
paddlepaddle
== 1.8.4:pip install paddlepaddle==1.8.4 # cpu or pip install paddlpaddle-gpu == 1.8.4 # gpu
-
Install
pgl
== 1.2.1:pip install pgl==1.2.1
-
Install
ogb
for evaluation:pip install ogb
To simply reproduce the results demonstrated above, run the following commands:
python extract_fingerprint.py --dataset_name ogbg-molhiv
CUDA_VISIBLE_DEVICES=0 python main.py --config hiv_config.yaml
The learned model parameters will be saved in ./outputs/task_name/
, where the task_name
is specified in hiv_config.yaml
.
Then you can predict the learned morgan fingerprint vectors by running the following commands:
CUDA_VISIBLE_DEVICES=0 python main.py --config hiv_config.yaml --infer_model ./outputs/task_name/model_name
The predicted morgan fingerprint will be saved in ./dataset/ogbg-molhiv/soft_mgf_feat.npy
.
To classify the property of moleculars by using the random forest classifier, run the following commands:
python random_forest.py --dataset_name ogbg-molhiv
All the hyperparameters can be found in the hiv_config.yaml
file.