forked from AarohiSingla/Mask-R-CNN-on-Custom-Dataset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom.py
198 lines (165 loc) · 7.43 KB
/
custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import sys
import json
import datetime
import numpy as np
import skimage.draw
import cv2
from mrcnn.visualize import display_instances
import matplotlib.pyplot as plt
# Root directory of the project
ROOT_DIR = "D:\MaskRCNN-main"
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn.config import Config
from mrcnn import model as modellib, utils
# Path to trained weights file
COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Directory to save logs and model checkpoints, if not provided
# through the command line argument --logs
DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")
class CustomConfig(Config):
"""Configuration for training on the custom dataset.
Derives from the base Config class and overrides some values.
"""
# Give the configuration a recognizable name
NAME = "object"
# We use a GPU with 12GB memory, which can fit two images.
# Adjust down if you use a smaller GPU.
IMAGES_PER_GPU = 2
# Number of classes (including background)
NUM_CLASSES = 1 + 2 # Background + phone,laptop and mobile
# Number of training steps per epoch
STEPS_PER_EPOCH = 10
# Skip detections with < 90% confidence
DETECTION_MIN_CONFIDENCE = 0.9
############################################################
# Dataset
############################################################
class CustomDataset(utils.Dataset):
def load_custom(self, dataset_dir, subset):
"""Load a subset of the Dog-Cat dataset.
dataset_dir: Root directory of the dataset.
subset: Subset to load: train or val
"""
# Add classes. We have only one class to add.
self.add_class("object", 1, "Horse")
self.add_class("object", 2, "Man")
# Train or validation dataset?
assert subset in ["train", "val"]
dataset_dir = os.path.join(dataset_dir, subset)
# Load annotations
# VGG Image Annotator saves each image in the form:
# { 'filename': '28503151_5b5b7ec140_b.jpg',
# 'regions': {
# '0': {
# 'region_attributes': {},
# 'shape_attributes': {
# 'all_points_x': [...],
# 'all_points_y': [...],
# 'name': 'polygon'}},
# ... more regions ...
# },
# 'size': 100202
# }
# We mostly care about the x and y coordinates of each region
annotations1 = json.load(open('D:/MaskRCNN-main/Dataset/train/via_project.json'))
# print(annotations1)
annotations = list(annotations1.values()) # don't need the dict keys
# The VIA tool saves images in the JSON even if they don't have any
# annotations. Skip unannotated images.
annotations = [a for a in annotations if a['regions']]
# Add images
for a in annotations:
# print(a)
# Get the x, y coordinaets of points of the polygons that make up
# the outline of each object instance. There are stores in the
# shape_attributes (see json format above)
polygons = [r['shape_attributes'] for r in a['regions']]
objects = [s['region_attributes']['name'] for s in a['regions']]
print("objects:",objects)
#name_dict = {"laptop": 1,"tab": 2,"phone": 3}
name_dict = {"Horse": 1,"Man": 2} #,"xyz": 3}
# key = tuple(name_dict)
num_ids = [name_dict[a] for a in objects]
# num_ids = [int(n['Event']) for n in objects]
# load_mask() needs the image size to convert polygons to masks.
# Unfortunately, VIA doesn't include it in JSON, so we must read
# the image. This is only managable since the dataset is tiny.
print("numids",num_ids)
image_path = os.path.join(dataset_dir, a['filename'])
image = skimage.io.imread(image_path)
height, width = image.shape[:2]
self.add_image(
"object", ## for a single class just add the name here
image_id=a['filename'], # use file name as a unique image id
path=image_path,
width=width, height=height,
polygons=polygons,
num_ids=num_ids
)
def load_mask(self, image_id):
"""Generate instance masks for an image.
Returns:
masks: A bool array of shape [height, width, instance count] with
one mask per instance.
class_ids: a 1D array of class IDs of the instance masks.
"""
# If not a Dog-Cat dataset image, delegate to parent class.
image_info = self.image_info[image_id]
if image_info["source"] != "object":
return super(self.__class__, self).load_mask(image_id)
# Convert polygons to a bitmap mask of shape
# [height, width, instance_count]
info = self.image_info[image_id]
if info["source"] != "object":
return super(self.__class__, self).load_mask(image_id)
num_ids = info['num_ids']
mask = np.zeros([info["height"], info["width"], len(info["polygons"])],
dtype=np.uint8)
for i, p in enumerate(info["polygons"]):
# Get indexes of pixels inside the polygon and set them to 1
rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x'])
mask[rr, cc, i] = 1
# Return mask, and array of class IDs of each instance. Since we have
# one class ID only, we return an array of 1s
# Map class names to class IDs.
num_ids = np.array(num_ids, dtype=np.int32)
return mask, num_ids #np.ones([mask.shape[-1]], dtype=np.int32)
def image_reference(self, image_id):
"""Return the path of the image."""
info = self.image_info[image_id]
if info["source"] == "object":
return info["path"]
else:
super(self.__class__, self).image_reference(image_id)
def train(model):
"""Train the model."""
# Training dataset.
dataset_train = CustomDataset()
dataset_train.load_custom("D:/MaskRCNN-main/dataset", "train")
dataset_train.prepare()
# Validation dataset
dataset_val = CustomDataset()
dataset_val.load_custom("D:/MaskRCNN-main/dataset", "val")
dataset_val.prepare()
# *** This training schedule is an example. Update to your needs ***
# Since we're using a very small dataset, and starting from
# COCO trained weights, we don't need to train too long. Also,
# no need to train all layers, just the heads should do it.
print("Training network heads")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=10,
layers='heads')
config = CustomConfig()
model = modellib.MaskRCNN(mode="training", config=config,
model_dir=DEFAULT_LOGS_DIR)
weights_path = COCO_WEIGHTS_PATH
# Download weights file
if not os.path.exists(weights_path):
utils.download_trained_weights(weights_path)
model.load_weights(weights_path, by_name=True, exclude=[
"mrcnn_class_logits", "mrcnn_bbox_fc",
"mrcnn_bbox", "mrcnn_mask"])
train(model)