-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
285 lines (237 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import argparse
import time
import torch
from data.dataset import get_dataloader
from tokenizer.fr_en_tokenizer import Tokenizer
from torch.optim import Adam
from torch.optim.lr_scheduler import LambdaLR
from torch.nn import CrossEntropyLoss
from models.transformer import TranslationTransformer
from utils.helper import MaskMaker, format_shifted_tgt
from ignite.engine import Engine, Events, create_supervised_evaluator
from ignite.metrics import Loss, Accuracy, Bleu
from ignite.handlers import ModelCheckpoint
from ignite.contrib.handlers import ProgressBar, TensorboardLogger
# from configs.transformer_512dh8_e6d6 import model_params, train_params, valid_params
def parse_args():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('--resume', type=str, default=None, help='resume from checkpoint')
parser.add_argument('--config', type=str, default='configs/transformer_512dh8_e6d6.py', help='config file')
return parser.parse_args()
def main(args):
# config
from importlib.machinery import SourceFileLoader
config = SourceFileLoader('config', args.config).load_module()
model_params = config.model_params
train_params = config.train_params
valid_params = config.valid_params
run_name = config.run_name
run_dir = f"runs/{run_name}" + time.strftime(r"_%Y%m%d_%H%M%S")
run_checkpoint_dir = f"{run_dir}/checkpoints"
run_log_dir = f"{run_dir}/logs"
from pprint import pprint
pprint(model_params)
pprint(train_params)
pprint(valid_params)
# device
device = torch.device(
"cuda" if torch.cuda.is_available() else ("mps" if torch.backends.mps.is_available() else "cpu")
)
# tokenizer
wrapped_tokenizer = Tokenizer(model_params['seq_len'])
# 加载数据
train_loader = get_dataloader("train", batch_size=train_params['batch_size'], wrapped_tokenizer=wrapped_tokenizer)
val_loader = get_dataloader("validation", batch_size=valid_params['batch_size'], wrapped_tokenizer=wrapped_tokenizer)
# 初始化模型、优化器、损失函数
model_params['src_vocab_size'] = wrapped_tokenizer.src_vocab_size
model_params['tgt_vocab_size'] = wrapped_tokenizer.tgt_vocab_size
mask_maker = MaskMaker(wrapped_tokenizer)
model = TranslationTransformer(config=model_params).to(device)
optimizer = Adam(model.parameters(), lr=train_params['learning_rate'], betas=(train_params['adam_beta1'], train_params['adam_beta2']), eps=train_params['adam_epsilon'])
print(f"lr: {optimizer.param_groups[0]['lr']}")
if train_params['scheduler'] == 'epochbased':
print('Using epochbased scheduler')
def lr_lambda(epoch):
warmup_epoch = 6
down = 7
if epoch < warmup_epoch:
return (epoch+1) / (warmup_epoch+1)
# return epoch+1 / warmup_epoch+1
elif epoch < down:
return 1
else:
return torch.exp(torch.tensor(-0.35 * (epoch - down))) # 0.1 for more epochs
elif train_params['scheduler'] == 'iterbased':
print('Using iterbased scheduler')
def lr_lambda(iteration): # scheduler used in Attention is All You Need
warmup_steps = 8000
step_num = iteration + 1
arg1 = step_num ** -0.5
arg2 = step_num * (warmup_steps ** -1.5)
lr = (model_params['d_model'] ** -0.5) * min(arg1, arg2)
return lr
else:
raise ValueError("scheduler must be 'epochbased' or 'iterbased'")
lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda)
criterion = CrossEntropyLoss(ignore_index=wrapped_tokenizer.tgt_tokenizer.pad_token_id)
# resume
if args.resume is not None:
model.load_state_dict(torch.load("checkpoints/regular_checkpoint_1.pt")['model'])
optimizer.load_state_dict(torch.load("checkpoints/regular_checkpoint_1.pt")['optimizer'])
# 接下来创建 trainer 和 evaluator
# train的每个epoch结束后,会调用 evaluator 进行验证集的验证,也可能单独运行evaluator
# 创建 trainer
def train_step(engine, batch):
model.train()
optimizer.zero_grad()
# read texts from batch
src, tgt = batch
# src: [batch, seq_len]
input_tgt, output_tgt = format_shifted_tgt(tgt)
# input_tgt: [batch, seq_len]
# output_tgt: [batch, seq_len]
src = src.to(device)
input_tgt = input_tgt.to(device)
output_tgt = output_tgt.to(device)
# create masks
masks = mask_maker.create_masks(src, input_tgt)
# forward
output = model(src=src, tgt=input_tgt, masks=masks)
# output: [batch, seq_len, tgt_vocab_size]
# calculate loss
output_ = output.view(-1, output.shape[-1]) # [batch * seq_len, tgt_vocab_size]
label_ = output_tgt.view(-1) # [batch * seq_len]
loss = criterion(output_, label_)
# backward
loss.backward()
if train_params['scheduler'] == 'iterbased':
lr_scheduler.step()
optimizer.step()
return loss.item()
trainer = Engine(train_step)
# 创建 evaluator
def validation_step(engine, batch):
model.eval()
with torch.no_grad():
src, tgt = batch
src = src.to(device)
input_tgt, output_tgt = format_shifted_tgt(tgt)
input_tgt = input_tgt.to(device)
output_tgt = output_tgt.to(device)
masks = mask_maker.create_masks(src, input_tgt)
output = model(src=src, tgt=input_tgt, masks=masks)
# -> [batch, seq_len, tgt_vocab_size]
output_ = output.view(-1, output.shape[-1])
# -> [batch * seq_len, tgt_vocab_size]
label_ = output_tgt.view(-1)
# -> [batch * seq_len]
# mask pad
mask = masks['tgt_key_padding_mask'].view(-1)
output_acc = output_[~mask]
label_acc = label_[~mask]
return output_, label_, output_acc, label_acc
# train_evaluator = Engine(validation_step)
val_evaluator = Engine(validation_step)
# Attach metrics to the evaluators
val_metrics = {
"accuracy": Accuracy(
output_transform=lambda x: (x[2], x[3])
), # Accuracy: 计算准确率
"loss": Loss(
criterion,
output_transform=lambda x: (x[0], x[1])
) # Loss: 计算损失
}
for name, metric in val_metrics.items():
# metric.attach(train_evaluator, name)
metric.attach(val_evaluator, name)
# 每个epoch结束后,调用train_evaluator进行验证
# 每model_params['val_freq']个epoch结束后,调用val_evaluator进行验证
@trainer.on(Events.ITERATION_COMPLETED)
def log_training_loss(engine):
engine.state.metrics["loss"] = engine.state.output
# @trainer.on(Events.EPOCH_COMPLETED)
# def log_training_results(trainer):
# train_evaluator.run(train_loader)
# metrics = train_evaluator.state.metrics
# print(f"Training Results - Epoch: {trainer.state.epoch} Avg accuracy: {metrics['accuracy']:.2f} Avg loss: {metrics['loss']:.2f}")
@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(trainer):
if trainer.state.epoch % valid_params['val_freq'] == 0:
val_evaluator.run(val_loader)
metrics = val_evaluator.state.metrics
print(f"\nValidation Results - Epoch: {trainer.state.epoch} Avg accuracy: {metrics['accuracy']:.2f} Avg loss: {metrics['loss']:.2f}")
@trainer.on(Events.EPOCH_COMPLETED)
def update_lr(engine):
if train_params['scheduler'] == 'epochbased':
lr_scheduler.step()
print(f"Learning rate: {optimizer.param_groups[0]['lr']}")
# 使用 ProgressBar 显示训练进度
# 使用 ModelCheckpoint 保存模型
# 使用 TensorboardLogger 记录训练过程
# Attach progress bar
# train bar
ProgressBar(persist=False).attach(trainer, metric_names="all")
# val bar
# ProgressBar(persist=False).attach(train_evaluator, metric_names="all")
# ProgressBar(persist=False).attach(val_evaluator, metric_names="all")
# Attach model checkpoint
regular_checkpoint_handler = ModelCheckpoint(
dirname=run_checkpoint_dir,
filename_prefix="regular_checkpoint",
n_saved=3,
create_dir=True,
require_empty=False,
global_step_transform=lambda *_: trainer.state.epoch,
# {"model": model, "optimizer": optimizer}
)
trainer.add_event_handler(Events.EPOCH_COMPLETED, regular_checkpoint_handler, {"model": model, "optimizer": optimizer})
# also after each epoch, check if the loss is the best, if so, save the model
best_checkpoint_handler = ModelCheckpoint(
dirname=run_checkpoint_dir,
filename_prefix="best_checkpoint",
n_saved=1,
create_dir=True,
require_empty=False,
# save_as_state_dict=True,
global_step_transform=lambda *_: trainer.state.epoch,
score_function=lambda engine: -engine.state.metrics["loss"],
score_name="loss",
)
trainer.add_event_handler(Events.EPOCH_COMPLETED, best_checkpoint_handler, {"model": model, "optimizer": optimizer})
# Attach tensorboard logger:
# every epoch, log the train loss and train accuracy
# every eval, log the val loss and val accuracy
# every time either checkpoint_handler is called, log the best model
tb_logger = TensorboardLogger(log_dir=run_log_dir)
tb_logger.attach_output_handler(
trainer,
event_name=Events.EPOCH_COMPLETED,
tag="training",
output_transform=lambda x: x,
)
# tb_logger.attach_output_handler(
# train_evaluator,
# event_name=Events.EPOCH_COMPLETED,
# tag="training",
# metric_names="all",
# global_step_transform=lambda *_: trainer.state.epoch,
# )
tb_logger.attach_output_handler(
val_evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metric_names="all",
global_step_transform=lambda *_: trainer.state.epoch,
)
# 开始训练
trainer.run(train_loader, max_epochs=train_params['num_epochs'])
if __name__ == "__main__":
# proxy
# os.environ['http_proxy'] = 'http://127.0.0.1:7890'
# os.environ['https_proxy'] = 'http://127.0.0.1:7890'
# CUDA_LAUNCH_BLOCKING=1
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
args = parse_args()
main(args)