-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsiameseTextCNN_v2.py
129 lines (102 loc) · 5.38 KB
/
siameseTextCNN_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 20 23:56:18 2018
@author: Hendry
"""
import tensorflow as tf
import numpy as np
class siameseTextCNN(object):
# Create model
def __init__(self,w2v_model, seqLengthDoc, seqLengthTitle, vocabSize,
embeddingSize, filterSizes, numFilters,numClasses=4, numHidden=10, l2_reg_lambda=0.01):
self.x1 = tf.placeholder(tf.int32, [None, seqLengthDoc],name="input_x1")
self.x2 = tf.placeholder(tf.int32, [None, seqLengthTitle],name="input_x2")
self.y = tf.placeholder(tf.float32, [None, numClasses],name="input_y")
self.y0 = self.y[:,0]
self.y1 = self.y[:,1:]
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
l2_reg = tf.constant(0.0)
maxLenX1 = seqLengthDoc
maxLenX2 = seqLengthTitle
if w2v_model is None:
self.W = tf.Variable(
tf.random_uniform([vocabSize, embeddingSize], -1.0, 1.0),
name="word_embeddings")
else:
self.W = tf.get_variable("word_embeddings",initializer=w2v_model.vectors.astype(np.float32))
self.embeddedChars1 = tf.expand_dims(tf.nn.embedding_lookup(self.W, self.x1), -1)
self.embeddedChars2 = tf.expand_dims(tf.nn.embedding_lookup(self.W, self.x2), -1)
print(self.embeddedChars2)
output1 = []
output2 = []
numFiltersTotal = numFilters * len(filterSizes)
# Construct Filters
for i, filterSize in enumerate(filterSizes):
filterShape = [filterSize, embeddingSize, 1, numFilters]
for k in [1,2]:
with tf.name_scope("Conv-Maxpool-Layer-%s-%s" % (str(k),filterSize)):
# Convolution Layer
W = tf.Variable(tf.truncated_normal(filterShape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(1.0, shape=[numFilters]), name="b")
conv = tf.nn.conv2d(eval('self.embeddedChars'+str(k)),W,
strides=[1, 1, 1, 1],padding="VALID",name="conv")
# Activate function
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h, ksize=[1, eval('maxLenX'+str(k)) - filterSize + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
eval('output'+str(k)+'.append(pooled)')
self.hiddenPooled1 = tf.reshape(tf.concat( output1,3), [-1, numFiltersTotal], name='hiddenPooled1')
self.hiddenPooled2 = tf.reshape(tf.concat( output2,3), [-1, numFiltersTotal], name='hiddenPooled2')
# Compute similarity
with tf.name_scope("similarity"):
W = tf.get_variable(
"W",
shape=[numFiltersTotal, numFiltersTotal],
initializer=tf.contrib.layers.xavier_initializer())
self.transform1 = tf.matmul(self.hiddenPooled1, W)
self.sims = tf.reduce_sum(tf.multiply(self.transform1, self.hiddenPooled2), 1, keep_dims=True)
print(self.sims)
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
# Make input for classification
self.Input = tf.concat([self.hiddenPooled1, self.sims, self.hiddenPooled2],1, name='Input')
# hidden layer
with tf.name_scope("hidden"):
W = tf.get_variable(
"W_hidden",
shape=[2*numFiltersTotal+1, numHidden],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[numHidden]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.hiddenOutput = tf.nn.relu(tf.nn.xw_plus_b(self.Input, W, b, name="hiddenOutput"))
# Add dropout
with tf.name_scope("dropout"):
self.hDrop = tf.nn.dropout(self.hiddenOutput, self.dropout_keep_prob, name="hidden_output_drop")
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.get_variable(
"W_output",
shape=[numHidden, 4],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[4]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.hDrop, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
self.scores0 = self.scores[:,0]
self.scores1 = self.scores[:,1:]
# CalculateMean cross-entropy loss
with tf.name_scope("loss"):
losses1 = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores0, labels=self.y0)
losses2 = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores1, labels=self.y1)
self.loss = 0.75*tf.reduce_mean(losses2)+0.25*tf.reduce_mean(losses1) + l2_reg_lambda * l2_loss
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")