-
Notifications
You must be signed in to change notification settings - Fork 99
/
GA.py
165 lines (132 loc) · 4.7 KB
/
GA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import random
import numpy as np
import math
num_city=30#城市总数0-29
num_total=100#随机生成的初始解的总数
copy_num=70#保留的解的个数
cross_num=20#交叉解的个数
var_num=10#变异解的个数
location=np.loadtxt('city_location.txt')
#print(location)
#随机生成初始解[[],[],[]...]
def generate_initial():
initial=[]
city=list(range(num_city))
for i in range(num_total):
random.shuffle(city)
p=city.copy()
while (p in initial):
#print('2333')#随机了一个重复的解
random.shuffle(city)
p=city.copy()
initial.append(p)
return initial
#对称矩阵,两个城市之间的距离
def distance_p2p_mat():
dis_mat=[]
for i in range(30):
dis_mat_each=[]
for j in range(30):
dis=math.sqrt(pow(location[i][0]-location[j][0],2)+pow(location[i][1]-location[j][1],2))
dis_mat_each.append(dis)
dis_mat.append(dis_mat_each)
# print(dis_mat)
return dis_mat
#目标函数计算,适应度计算,中间计算。适应度为1/总距离*10000
def dis_adp_total(dis_mat,initial):
dis_adp=[]
# dis_test=[]
for i in range(num_total):
dis=0
for j in range(num_city-1):
dis=dis_mat[initial[i][j]][initial[i][j+1]]+dis
dis=dis_mat[initial[i][29]][initial[i][0]]+dis#回家
# dis_test.append(dis)
dis_adp_each= 10000.0/dis
dis_adp.append(dis_adp_each)
# print(dis_test)
return dis_adp
def choose_fromlast(dis_adp,answer_source):
mid_adp=[]
mid_adp_each=0
for i in range(num_total):
mid_adp_each=dis_adp[i]+mid_adp_each
mid_adp.append(mid_adp_each)
# print(mid_adp)
#产生0-mid_adp[num_total-1]之间的随机数
#选择n-1<随机数<n的那个n的解,保留
copy_ans=[]
for p in range(copy_num):
rand=random.uniform(0,mid_adp[num_total-1])#产生随机数
# print(rand)
# print(p)
for j in range(num_total):
if (rand<mid_adp[j]):#查找位置
copy_ans.append(answer_source[j])
break
else:
continue
return copy_ans
#随机选择保留下来的70中的25个进行交叉
def cross_pronew(copy_ans):
for i in range(cross_num):
which=random.randint(0,copy_num-1)#选择对那个解交叉
cross_list=copy_ans[which].copy()
while (cross_list in copy_ans):
p=random.randint(0,num_city-1)
q=random.randint(0,num_city-1)
cross_list[p],cross_list[q]=cross_list[q],cross_list[p]#第一次交换位置
m=random.randint(0,num_city-1)
n=random.randint(0,num_city-1)
cross_list[m],cross_list[n]=cross_list[n],cross_list[m]#第二次交换位置
copy_ans.append(cross_list)
cross_ans=copy_ans.copy()
return cross_ans
#随机选择那95中的5个进行变异
def var_pronew(cross_ans):
for i in range(var_num):
which=random.randint(0,copy_num+cross_num-1)#选择对那个解交叉
var_list=cross_ans[which].copy()
while (var_list in cross_ans):
p=random.randint(0,num_city-1)
q=random.randint(0,num_city-1)
var_list[p],var_list[q]=var_list[q],var_list[p]#交换位置
cross_ans.append(var_list)
var_ans=cross_ans.copy()
return var_ans
'''
answer_source=generate_initial()#原initial
#print(initial)
dis_mat=distance_p2p_mat()
#print(dis_mat)
dis_adp=dis_adp_total(dis_mat,answer_source)
#print(dis_adp)
copy_answer=choose_fromlast(dis_adp,answer_source)
#print(copy_answer)
cross_answer=cross_pronew(copy_answer)
#print(cross_answer)
var_answer=var_pronew(cross_answer)
print(var_answer)
'''
answer_source=generate_initial()
dis_mat=distance_p2p_mat()
#print(dis_mat)
dis_adp=dis_adp_total(dis_mat,answer_source)
adp_max_new=max(dis_adp)
if (max(dis_adp)>10000/700):
print('找到的最近距离是:',max(dis_adp))
else:
print('哎呀没找到,我再找找~')
answer_new=answer_source
dis_adp_new=dis_adp
while(adp_max_new<=10000/700):
copy_answer=choose_fromlast(dis_adp_new,answer_new)
cross_answer=cross_pronew(copy_answer)
var_answer=var_pronew(cross_answer)
answer_new=var_answer.copy()
dis_adp_new=dis_adp_total(dis_mat,answer_new)
adp_max_new=max(dis_adp_new)
# dis_min=10000/adp_max_new
# print('这次是:',dis_min)
dis_min=10000/adp_max_new
print('终于找到你啦:',dis_min)