-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare.py
202 lines (158 loc) · 7.64 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
Resourses I used to help me in the project:
--------------------------------------------
1.Udacity.com
2.geeksforgeeks.com
3.stackoverflow.com
"""
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
Months = ['january', 'february', 'march', 'april', 'may', 'june']
Days = {'Sat':'Saturday','Sun':'Sunday','Mon':'Monday','Tue':'Tuesday','Wed':'Wednesday','Thu':'Thursday','Fri':'Friday'}
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city = input('Would like to see data for Chicago, New York City, or Washington?\n').strip().lower()
filter_type = input('Would you like to filter the data by month, day, both or not at all? Type "none" for no time filter.\n').lower().strip()
if filter_type.lower().strip() == 'both': # get user input for month (all, january, february, ... , june)
month = input('Which Month? January, February, March, April, May,or June?\n').lower().strip()
# get user input for day of week (all, monday, tuesday, ... sunday)
day = input('Which Day? Please Type the First Three Letters (e.g. Thu=Thursday)\n').title().strip()
day = Days[day]
elif filter_type.lower().strip() == 'month':
month = input('Which Month? January, February, March, April, May,or June?\n').strip().lower()
day = 'all'
elif filter_type.lower().strip() == 'day':
day = input('Which Day? Please Type the First Three Letters (e.g. Thu=Thursday)\n').title().strip()
day = Days[day]
month = 'all'
else:
day = 'all' ; month = 'all'
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
df.dropna(inplace=True)
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
month = Months.index(month.lower().strip()) + 1
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.day_name()
# filter by month if applicable
if month != 'all':
df = df[df['month'] == month] # filter by month to create the new dataframe
if day.title().strip() in list(Days.keys()):
day = Days[day.title().strip()]
# filter by day of week if applicable
if day != 'all':
df = df[df['day_of_week'] == day] # filter by day of week to create the new dataframe
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# display the most common month
common_month = df['month'].mode()[0] # The number of The month
print("The Most Common Month:",Months[common_month - 1].title()) # The name of the month in Title case
# display the most common day of week
common_day_of_week = pd.DataFrame(df['day_of_week'].value_counts()).index[0]
print("The Most Common Day of Week:",common_day_of_week)
# display the most common start hour
common_start_hour = df['Start Time'].dt.hour.mode()[0]
print("The Most Common Start Hour:",common_start_hour)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# display most commonly used start station
common_start_station = pd.DataFrame(df['Start Station'].value_counts()).index[0]
print("most commonly used start station:",common_start_station)
# display most commonly used end station
common_end_station = pd.DataFrame(df['End Station'].value_counts()).index[0]
print("most commonly used end station:",common_end_station)
# display most frequent combination of start station and end station trip
most_frequent_start_station_and_end_station_trip = pd.DataFrame(df[['Start Station','End Station']].value_counts()).index[0]
print("most frequent start station and end station trip: (",most_frequent_start_station_and_end_station_trip[0], " => ",most_frequent_start_station_and_end_station_trip[1]," )")
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# display total travel time
print("The Total Travel Time:",np.sum(df['Trip Duration']))
# display mean travel time
print("The Mean Travel Time:",np.mean(df['Trip Duration']))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
print("User Type info:")
print("-"*15)
print(df['User Type'].value_counts())
# Display counts of gender
if 'Gender' in df:
print("\nGender info:")
print("-"*15)
print(df['Gender'].value_counts(),"\n")
# Display earliest, most recent, and most common year of birth
print('The Earliest Year: ', np.max(df['Birth Year']))
print('The Most Recent Year:',np.min(df['Birth Year']))
print('The Most Common Year:',df['Birth Year'].mode()[0])
else:
print('Gender And Birth Year stats cannot be calculated because They do not appear in the dataframe')
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def main():
while True:
city, month, day = get_filters()
df = load_data(city,month,day)
#df = load_data('washington','may','all')
print("number of dataframe rows is:",df.shape[0])
print("number of dataframe columns is:",df.shape[1])
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
view_data = input("Would you like to view 5 rows of individual trip data? Enter [yes] or [no]?").lower().strip()
start_loc = 0
while view_data == 'yes':
print(df.iloc[start_loc:(start_loc + 5)])
start_loc += 5
view_display = input("Do you wish to continue?type[yes|No]: ").lower().strip()
if view_display == 'no':
break
restart = input('\nWould you like to restart? Enter yes or no.\n').lower().strip()
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()
#print("number of dataframe rows is:",df.shape[0]) #will excute 300000
#print("number of dataframe columns is:",df.shape[1])