This repository has been archived by the owner on Jul 31, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
max_tree.py
494 lines (378 loc) · 14.3 KB
/
max_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
"""
Max-Tree computation and filters.
Reference:
[1] A fair comparison of many max-tree computation algorithms
(Extended version of the paper submitted to ISMM 2013)
Edwin Carlinet, Thierry Géraud.
Authors:
K. Masson
C. Meyer
"""
import numpy as np
import numba
from numba import jit
import math
from collections import namedtuple
# MaMPy includes
# Utilities
from utils import image_read
# Named Tuple for the max-tree structure
MaxTreeStructure = namedtuple("MaxTreeStructure", ["parent", "S"])
@jit(nopython=True)
def find_pixel_parent(parents, index):
"""
Given an image containing pixel's parent and a pixel id, returns the id of its parent id.
The parent is also named as root. A pixel is the root of itself if parents[index] == index.
"""
root = parents[index]
# Assign the root of the given pixel to the root of its parent.
if root != index:
parents[index] = find_pixel_parent(parents, root)
return parents[index]
else:
return root
@jit(nopython=True)
def canonize(image, parents, nodes_order):
"""
Makes sure all nodes of a max tree are valid.
"""
for pi in nodes_order:
root = parents[pi]
if image[root] == image[parents[root]]:
parents[pi] = parents[root]
@jit(nopython=True)
def get_neighbors_2d(connexity, shape, pi, size):
neighbors = []
# 4-connexity
pi_row = math.floor(pi / shape[1])
pi_top = pi - shape[1]
pi_bot = pi + shape[1]
pi_lft = pi - 1
pi_rgt = pi + 1
if pi_top >= 0:
neighbors.append(pi_top)
if pi_bot < size:
neighbors.append(pi_bot)
if math.floor(pi_lft / shape[1]) == pi_row:
neighbors.append(pi_lft)
if math.floor(pi_rgt / shape[1]) == pi_row:
neighbors.append(pi_rgt)
# 8-connexity
if connexity == 8:
pi_top_lef = pi_top - 1
pi_top_rgt = pi_top + 1
pi_bot_lef = pi_bot - 1
pi_bot_rgt = pi_bot + 1
if math.floor(pi_top_lef / shape[1]) == pi_row - 1:
neighbors.append(pi_top_lef)
if math.floor(pi_top_rgt / shape[1]) == pi_row - 1:
neighbors.append(pi_top_rgt)
if math.floor(pi_bot_lef / shape[1]) == pi_row + 1:
neighbors.append(pi_bot_lef)
if math.floor(pi_bot_rgt / shape[1]) == pi_row + 1:
neighbors.append(pi_bot_rgt)
return neighbors
@jit(nopython=True)
def get_neighbors_3d(connexity, shape, pi, size):
neighbors = []
# 6-connexity
pi_row = math.floor(pi / shape[1])
pi_slc = math.floor(pi / shape[2])
pi_far = pi + shape[2]
pi_cls = pi - shape[2]
pi_top = pi - shape[1]
pi_bot = pi + shape[1]
pi_lft = pi - 1
pi_rgt = pi + 1
if pi_top >= 0:
neighbors.append(pi_top)
if pi_bot < size:
neighbors.append(pi_bot)
if math.floor(pi_lft / shape[1]) == pi_row:
neighbors.append(pi_lft)
if math.floor(pi_rgt / shape[1]) == pi_row:
neighbors.append(pi_rgt)
if math.floor(pi_far / shape[2]) == pi_slc:
neighbors.append(pi_far)
if math.floor(pi_cls / shape[2]) == pi_slc:
neighbors.append(pi_cls)
# 18-connexity
if (connexity >= 18):
# /!\ Not Implemented Yet /!\
return neighbors
# 26-connexity
if (connexity == 26):
# /!\ Not Implemented Yet /!\
return neighbors
return neighbors
@jit(nopython=True)
def get_neighbors(connexity, shape, pi, size):
"""
:param connexity: connexity of the maxtree : acceptable value : 2D 4/8 - 3D 6/18/26 (default 4 and 6)
:param shape: shape of the input image
:param pi: current index in the flatten input image
:return: indexes of the neighbors with the given connexity and position
"""
# 2D
if len(shape) == 2:
return get_neighbors_2d(connexity, shape, pi, size)
# 3D
"""
if len(shape) == 3:
return get_neighbors_3d(connexity, shape, pi, size)
"""
@jit(nopython=True)
def maxtree_berger_union_by_rank(input, connexity):
"""
Union-find with union-by-rank based max-tree algorithm.
Algorithm 3 in the paper [1].
:param input: numpy ndarray of a single channel image
:param connexity: connexity of the maxtree : acceptable value : 2D 4/8 - 3D 6/18/26 (default 4 and 6)
:return: the maxtree of the image (parent and S vector pair)
"""
input_flat = input.flatten()
resolution = input_flat.size
# Unique value telling if a pixel is defined in the max tree or not.
undefined_node = resolution + 2
# We generate an extra vector of pixels that order nodes downard.
# This vector allow to traverse the tree both upward and downard
# without having to sort childrens of each node.
# Initially, we sort pixel by increasing value and add indices in it.
sorted_pixels = input_flat.argsort()
# We store in the parent node of each pixel in an image.
# To do so we use the index of the pixel (x + y * width).
parents = np.full(
resolution,
fill_value=undefined_node,
dtype=np.uint32)
ranks = np.full(
resolution,
fill_value=0,
dtype=np.uint32)
reprs = np.full(
resolution,
fill_value=0,
dtype=np.uint32)
# zparents make root finding much faster.
zparents = parents.copy()
# We go through sorted pixels in the reverse order.
for pi in sorted_pixels[::-1]:
# Make a node.
# By default, a pixel is its own parent.
parents[pi] = pi
zparents[pi] = pi
ranks[pi] = 0
reprs[pi] = pi
zp = pi
neighbors = get_neighbors(connexity, input.shape, pi, input.size)
# Filter neighbors.
neighbors = [n for n in neighbors if parents[n] != undefined_node]
# Go through neighbors.
for nei_pi in neighbors:
zn = find_pixel_parent(zparents, nei_pi)
if zn != zp:
parents[reprs[zn]] = pi
if ranks[zp] < ranks[zn]:
# Swap them.
zp, zn = zn, zp
# Merge sets.
zparents[zn] = zp
reprs[zp] = pi
if ranks[zp] == ranks[zn]:
ranks[zp] += 1
canonize(input_flat, parents, sorted_pixels)
return MaxTreeStructure(parents, sorted_pixels)
@jit(nopython=True)
def maxtree_berger_union_by_rank_level_compression(input, connexity):
"""
Union-find with union-by-rank based max-tree algorithm with level compression.
Algorithm 5 in the paper [1].
:param input: numpy ndarray of a single channel image
:param connexity: connexity of the maxtree : acceptable value : 2D 4/8 - 3D 6/18/26 (default 4 and 6)
:return: the maxtree of the image (parent and S vector pair)
"""
input_flat = input.flatten()
resolution = input_flat.size
# Unique value telling if a pixel is defined in the max tree or not.
undefined_node = resolution + 2
# We generate an extra vector of pixels that order nodes downard.
# This vector allow to traverse the tree both upward and downard
# without having to sort childrens of each node.
# Initially, we sort pixel by increasing value and add indices in it.
sorted_pixels = input_flat.argsort()
# We store in the parent node of each pixel in an image.
# To do so we use the index of the pixel (x + y * width).
parents = np.full(
resolution,
fill_value=undefined_node,
dtype=np.uint32)
# zparents make root finding much faster.
zparents = parents.copy()
j = resolution - 1
# We go through sorted pixels in the reverse order.
for pi in sorted_pixels[::-1]:
# Make a node.
# By default, a pixel is its own parent.
parents[pi] = pi
zparents[pi] = pi
zp = pi
neighbors = get_neighbors(connexity, input.shape, pi, input.size)
# Filter neighbors.
neighbors = [n for n in neighbors if parents[n] != undefined_node]
# Go through neighbors.
for nei_pi in neighbors:
zn = find_pixel_parent(zparents, nei_pi)
if zn != zp:
if input_flat[zp] == input_flat[zn]:
zp, zn = zn, zp
# Merge sets.
zparents[zn] = zp
parents[zn] = zp
sorted_pixels[j] = zn
j -= 1
canonize(input_flat, parents, sorted_pixels)
return MaxTreeStructure(parents, sorted_pixels)
@jit(nopython=True)
def maxtree(input, connexity=None):
"""
Compute the max-tree of a 2D/3D image using simple strategy to select algorithms
(Check the "A comparison of many max-tree computation algorithms" poster for the decision tree strategy)
This is the only max-tree computing function the regular user should use
:param input: numpy ndarray of a single channel image
Good practice : use a numpy fixed-size dtype (https://www.numpy.org/devdocs/user/basics.types.html)
:param connexity: connexity of the maxtree : acceptable value : 2D 4/8 - 3D 6/18/26 (default 4 and 6)
:return: the maxtree of the image (parent and S vector pair)
"""
# Check input
if input.ndim not in [2, 3]:
raise ValueError("Input image is not a 2D or 3D array")
if input.ndim == 2:
if connexity is None or connexity not in [4, 8]:
connexity = 4
# print("Connexity set to default (2D -> 4-connexity)")
if input.ndim == 3:
if connexity is None or connexity not in [6, 18, 26]:
connexity = 6
# print("Connexity set to default (3D -> 6-connexity)")
# Choose algorithm
# Low quantization (<= 8-bit pixels) : Salembier et al.
# /!\ Not Implemented Yet /!\
# if input.dtype in [np.bool, np.byte, np.ubyte, np.int8, np.uint8]:
# maxtree_salembier(input, connexity)
# High quantization : Berger + rank
return maxtree_berger_union_by_rank_level_compression(input, connexity)
@jit(nopython=True)
def direct_filter(maxtree_p_s, input, attribute, λ):
"""
The parameters order follows the order given in the article [1]
:param maxtree_p_s: the maxtree of the image (parent and S vector pair)
:param input: numpy ndarray of a single channel image
:param attribute: the attribute associated with the maxtree
:param λ: attribute threashold
:return: the filtered image
"""
ima = input.flatten()
out = np.full(
ima.shape,
fill_value=0,
dtype=input.dtype)
proot = maxtree_p_s.S[0]
if attribute[proot] < λ:
out[proot] = 0
else:
out[proot] = ima[proot]
for p in maxtree_p_s.S:
q = maxtree_p_s.parent[p]
if ima[q] == ima[p]:
out[p] = out[q] # p not canonical
elif attribute[p] < λ:
out[p] = out[q] # Criterion failed
else:
out[p] = ima[p] # Criterion pass
return out.reshape(input.shape)
@jit(nopython=True)
def get_area_attribute(input, maxtree_p_s):
# Compute area attribute
area_attribute = np.full(input.size,
fill_value=1,
dtype=np.uint32)
# Everything except the first item, reversed
# > np.arange(8)[:0:-1]
# array([7, 6, 5, 4, 3, 2, 1])
for p in maxtree_p_s.S[:0:-1]:
q = maxtree_p_s.parent[p]
area_attribute[q] += area_attribute[p]
return area_attribute
@jit(nopython=True)
def area_filter(input, threshold, maxtree_p_s=None):
"""
:param input: numpy ndarray of a single channel image
:param threshold: threshold of the filter (minimum area to keep)
:param maxtree_p_s: the maxtree of the image (parent and S vector pair)
:return: numpy ndarray of the image
"""
# Check input
if input.ndim not in [2, 3]:
raise ValueError("Input image is not a 2D or 3D array")
if threshold < 1:
raise ValueError("Threshold less than 1")
if maxtree_p_s is None:
maxtree_p_s = maxtree(input)
if maxtree_p_s.parent.size != maxtree_p_s.S.size:
raise ValueError("Invalid max-tree")
if maxtree_p_s.S.size != input.size:
raise ValueError("Image and max-tree doesn't match")
# Compute area attribute
area_attribute = get_area_attribute(input, maxtree_p_s)
# Apply Filter
return direct_filter(maxtree_p_s, input, area_attribute, threshold)
@jit(nopython=True)
def get_contrast_attribute(input, maxtree_p_s):
# Compute contrast attribute
pixel_values = input.flatten()
contrast_attribute = np.full(input.size,
fill_value=0,
dtype=np.uint16)
# Everything except the first item, reversed
# > np.arange(8)[:0:-1]
# array([7, 6, 5, 4, 3, 2, 1])
for p in maxtree_p_s.S[:0:-1]:
q = maxtree_p_s.parent[p]
contrast_attribute[q] = max(contrast_attribute[q], pixel_values[p] - pixel_values[q] + contrast_attribute[p])
return contrast_attribute
@jit(nopython=True)
def contrast_filter(input, threshold, maxtree_p_s=None):
"""
:param input: numpy ndarray of a single channel image
:param threshold: threshold of the filter (minimum contrast to keep)
:param maxtree_p_s: the maxtree of the image (parent and S vector pair)
:return: numpy ndarray of the image
"""
# Check input
if input.ndim not in [2, 3]:
raise ValueError("Input image is not a 2D or 3D array")
if threshold < 1:
raise ValueError("Threshold less than 1")
if maxtree_p_s is None:
maxtree_p_s = maxtree(input)
if maxtree_p_s.parent.size != maxtree_p_s.S.size:
raise ValueError("Invalid max-tree")
if maxtree_p_s.S.size != input.size:
raise ValueError("Image and max-tree doesn't match")
# Compute contrast attribute
contrast_attribute = get_contrast_attribute(input, maxtree_p_s)
# Apply Filter
return direct_filter(maxtree_p_s, input, contrast_attribute, threshold)
def main():
image_input = image_read("examples/images/circuit_small.png")
# image_input = image_input / image_input.max()
# image_output = area_filter(image_input, 500)
image_output = contrast_filter(image_input, 30)
import matplotlib.pyplot as plt
plt.imshow(image_input, cmap="gray")
plt.show()
plt.imshow(image_output, cmap="gray")
plt.show()
print(image_input.max(), image_input.min(), image_input.max() - image_input.min())
if __name__ == "__main__":
main()