import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
#----------------------------------
# 載入資料
#----------------------------------
def loadDataSet(fileName):
dataMat=[]
labelMat=[]
fr=open(fileName)
for line in fr.readlines():
lineArr=line.strip().split('\t')
data1=float(lineArr[0])
data2=float(lineArr[1])
label=int(lineArr[2])
dataMat.append([data1, data2])
labelMat.append(label)
return dataMat, labelMat
#----------------------------------
#訓練資料個數(總資料100個)
#----------------------------------
numOfTraining=100
#----------------------------------
# 載入資料
#----------------------------------
dataArr, labelArr=loadDataSet('testSet-NOT-linearSeparable.txt')
#-------------------------------------------------
# 將list轉成ndarray, 方便切分為訓練及測試兩區段
#-------------------------------------------------
dataND=np.array(dataArr)
dataND=dataND.astype(float)
labelND=np.array(labelArr)
labelND=labelND.astype(int)
#----------------------------------
# 訓練資料
#----------------------------------
X=dataND[0:numOfTraining,]
#----------------------------------
# 訓練資料的標籤
#----------------------------------
Y=labelND[0:numOfTraining]
#----------------------------------
# 建立分類模型
#----------------------------------
clf = svm.SVC(C=0.05, kernel='linear')
clf.fit(X, Y)
print('訓練的模型:')
print(clf)
#----------------------------------
# 計算分隔 hyperplane
#----------------------------------
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-2, 10)
yy = a * xx - (clf.intercept_[0]) / w[1]
#----------------------------------------------------
# 計算與 hyperplane 平行的 margin, 選擇(1)或(2)
#----------------------------------------------------
#==================
# (1)hard margin
#==================
'''
b = clf.support_vectors_[0]
print(b)
yy_down = a * xx + (b[1] - a * b[0])
b = clf.support_vectors_[-1]
print(b)
yy_up = a * xx + (b[1] - a * b[0])
'''
#----------------------------------------------------
# 計算與 hyperplane 平行的 margin, 選擇(1)或(2)
#----------------------------------------------------
#==================
# (2)soft margin
#==================
margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2))
yy_down = yy + a * margin
yy_up = yy - a * margin
#==========================================
# 繪圖
#==========================================
import matplotlib.pyplot as plt
#---------------------------
# 繪圖
#---------------------------
fig = plt.figure()
# 設定字型及大小
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['font.size'] = 14
# 設定圖標題
plt.title('Title')
# 設定x軸及y軸標題
plt.xlabel('x')
plt.ylabel('y')
# 資料表內的grid
plt.grid(True)
# 設定x軸及y軸的尺規範圍
plt.axis([-2, 12, -10, 10])
# 繪製資料
plt.plot(dataND[labelND==1,0], dataND[labelND==1,1], 'ys') #標籤為1
plt.plot(dataND[labelND==-1,0], dataND[labelND==-1,1], 'c^') #標籤為-1
# 繪製 hyperplane 及 margin
plt.plot(xx, yy, 'k-')
plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')
# 繪製 support vectors
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, facecolors='r')
#---------------------------
# 儲存圖檔
#---------------------------
fig.savefig('graph.png')
3.542485 1.977398 -1
3.018896 2.556416 -1
7.551510 -1.580030 -1
2.114999 -0.004466 -1
8.127113 1.274372 1
7.108772 -0.986906 -1
8.610639 2.046708 1
2.326297 0.265213 -1
3.634009 1.730537 -1
0.341367 -0.894998 -1
3.125951 0.293251 -1
2.123252 -0.783563 -1
0.887835 -2.797792 -1
7.139979 -2.329896 1
1.696414 -1.212496 -1
8.117032 0.623493 1
8.497162 -0.266649 1
4.658191 3.507396 -1
8.197181 1.545132 1
1.208047 0.213100 -1
1.928486 -0.321870 -1
2.175808 -0.014527 -1
7.886608 0.461755 1
3.223038 -0.552392 -1
3.628502 2.190585 -1
7.407860 -0.121961 1
7.286357 0.251077 1
2.301095 -0.533988 -1
-0.232542 -0.547690 -1
3.457096 -0.082216 1
3.023938 -0.057392 -1
8.015003 0.885325 1
8.991748 0.923154 1
7.916831 -1.781735 -1
7.616862 -0.217958 1
2.450939 0.744967 -1
7.270337 -2.507834 1
1.749721 -0.961902 -1
1.803111 -0.176349 -1
8.804461 3.044301 1
1.231257 -0.568573 -1
2.074915 1.410550 -1
-0.743036 -1.736103 -1
3.536555 3.964960 -1
8.410143 0.025606 1
7.382988 -0.478764 1
6.960661 -0.245353 1
8.234460 0.701868 1
8.168618 -0.903835 1
1.534187 -0.622492 -1
9.229518 2.066088 1
7.886242 0.191813 1
2.893743 -1.643468 -1
1.870457 -1.040420 -1
5.286862 -2.358286 1
6.080573 0.418886 1
2.544314 1.714165 -1
6.016004 -3.753712 1
0.926310 -0.564359 -1
0.870296 -0.109952 -1
2.369345 1.375695 -1
1.363782 -0.254082 -1
7.279460 -0.189572 1
1.896005 0.515080 -1
8.102154 -0.603875 1
2.529893 0.662657 1
1.963874 -0.365233 -1
8.132048 0.785914 1
8.245938 0.372366 1
6.543888 0.433164 1
-0.236713 -5.766721 -1
8.112593 0.295839 1
9.803425 1.495167 1
1.497407 -0.552916 -1
1.336267 -1.632889 -1
9.205805 -0.586480 1
1.966279 -1.840439 -1
8.398012 1.584918 1
7.239953 -1.764292 1
7.556201 0.241185 1
9.015509 0.345019 1
8.266085 -0.230977 1
8.545620 2.788799 1
9.295969 1.346332 1
2.404234 0.570278 -1
2.037772 0.021919 -1
1.727631 -0.453143 -1
1.979395 -0.050773 -1
8.092288 -1.372433 1
1.667645 0.239204 -1
9.854303 1.365116 1
7.921057 -1.327587 -1
8.500757 1.492372 1
1.339746 -0.291183 -1
3.107511 0.758367 -1
2.609525 0.902979 1
3.263585 1.367898 -1
2.912122 -0.202359 1
1.731786 0.589096 -1
2.387003 1.573131 -1