forked from bianlab/HyperspecI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_HyperspecI_V1.py
191 lines (153 loc) · 8.67 KB
/
train_HyperspecI_V1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import hdf5storage
import torch
import argparse
import os
import time
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from getdataset import TrainDataset_V1, ValidDataset_V1
from my_utils import AverageMeter, initialize_logger, save_checkpoint, Loss_RMSE, Loss_PSNR, Loss_TV, Loss_MRAE, Loss_SAM
from DataProcess import Data_Process
import torch.utils.data
from architecture import model_generator
import numpy as np
import torch.nn as nn
parser = argparse.ArgumentParser(description="Model training of HyperspecI-V1")
parser.add_argument("--method", type=str, default='V1_srnet', help='Model')
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
parser.add_argument("--end_epoch", type=int, default=200, help="number of epochs")
parser.add_argument("--epoch_sam_num", type=int, default=5000, help="per_epoch_iteration")
parser.add_argument("--init_lr", type=float, default=4e-4, help="initial learning rate")
parser.add_argument("--gpu_id", type=str, default='0', help='select gpu')
parser.add_argument("--pretrained_model_path", type=str, default=None, help='pre-trained model path')
parser.add_argument("--sigma", type=float, default=(0, 1 / 255, 2/255, 3/255), help="Sigma of Gaussian Noise")
parser.add_argument("--mask_path", type=str, default='./MASK/Mask_HyperspecI_V1.mat', help='path of calibrated sensing matrix')
parser.add_argument("--output_folder", type=str, default='./exp/HyperspecI_V1/', help='output path')
parser.add_argument("--start_dir", type=int, default=(0, 0), help="size of test image coordinate")
parser.add_argument("--image_size", type=int, default=(2048, 2048), help="size of test image")
parser.add_argument("--train_patch_size", type=int, default=(512, 512), help="size of patch")
parser.add_argument("--valid_patch_size", type=int, default=(512, 512), help="size of patch")
parser.add_argument("--train_data_path", type=str, default="./Dataset_Train/HSI_400_1000/Train/", help='path datasets')
parser.add_argument("--valid_data_path", type=str, default="./Dataset_Train/HSI_400_1000/Valid/", help='path datasets')
opt = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id
criterion_rmse = Loss_RMSE()
criterion_psnr = Loss_PSNR()
criterion_mrae = Loss_MRAE()
criterion_sam = Loss_SAM()
criterion_tv = Loss_TV(TVLoss_weight=float(0.5))
data_processing = Data_Process()
mask_init = hdf5storage.loadmat(opt.mask_path)['mask']
print('mask_init:', mask_init.shape)
mask = mask_init[:, opt.start_dir[0]:opt.start_dir[0]+opt.image_size[0], opt.start_dir[1]:opt.start_dir[1] + opt.image_size[1]]
mask = np.maximum(mask, 0)
mask = mask / mask.max()
mask = torch.from_numpy(mask)
mask = mask.cuda()
print('mask:', mask.dtype, mask.shape, mask.max(), mask.mean(), mask.min())
def main():
cudnn.benchmark = True
print("\nloading dataset ...")
train_data = TrainDataset_V1(data_path=opt.train_data_path, patch_size=opt.train_patch_size, arg=True)
print('len(train_data):', len(train_data))
print(f"Iteration per epoch: {len(train_data)}")
val_data = ValidDataset_V1(data_path=opt.valid_data_path, patch_size=opt.valid_patch_size, arg=True)
print('len(valid_data):', len(val_data))
output_path = opt.output_folder
# iterations
per_epoch_iteration = opt.epoch_sam_num // opt.batch_size
total_iteration = per_epoch_iteration*opt.end_epoch
if not os.path.exists(output_path):
os.makedirs(output_path)
model = model_generator(opt.method, opt.pretrained_model_path)
total_params = sum(p.numel() for p in model.parameters())
print(f'{total_params:,} total parameters.')
if torch.cuda.is_available():
criterion_rmse.cuda()
criterion_psnr.cuda()
criterion_tv.cuda()
criterion_mrae.cuda()
start_epoch = 0
iteration = start_epoch * per_epoch_iteration
#opt.init_lr
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=opt.init_lr,
betas=(0.9, 0.999))
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, total_iteration - iteration, eta_min=1e-6)
log_dir = os.path.join(output_path, 'train.log')
logger = initialize_logger(log_dir)
record_rmse_loss = 10000
strat_time = time.time()
while iteration < total_iteration:
model.train()
losses = AverageMeter()
train_loader = DataLoader(dataset=train_data, batch_size=opt.batch_size, shuffle=True, num_workers=8,
pin_memory=True, drop_last=True)
val_loader = DataLoader(dataset=val_data, batch_size=1, shuffle=False, num_workers=8, pin_memory=True)
for i, (HSIs) in enumerate(train_loader):
HSIs = HSIs.cuda()
#selecte the sub-patches radomly
mask_patch = data_processing.get_random_mask_patches(mask=mask, image_size=opt.image_size, patch_size=opt.train_patch_size, batch_size=opt.batch_size)
#Generate the measurements using traning HSIs and selected sub-pattern
inputs, targets = data_processing.get_mos_hsi(hsi=HSIs, mask=mask_patch, sigma=opt.sigma, mos_size=opt.train_patch_size[0], hsi_input_size=opt.train_patch_size[0], hsi_target_size=opt.train_patch_size[0])
inputs = Variable(inputs)
targets = Variable(targets)
lr = optimizer.param_groups[0]['lr']
outputs = model(inputs, mask_patch)
#calculate the hybrid loss
loss_rmse = criterion_rmse(outputs, targets)
loss_tv = criterion_tv(outputs, targets)
loss_mrae = criterion_mrae(outputs, targets) * 0.2
loss = loss_rmse + loss_tv + loss_mrae
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
losses.update(loss.data)
iteration = iteration + 1
if iteration % per_epoch_iteration == 0:
epoch = iteration // per_epoch_iteration
end_time = time.time()
epoch_time = end_time - strat_time
strat_time = time.time()
rmse_loss, psnr_loss, mrae_loss, sam_loss = Validate(val_loader, model, mask)
# Save model
if torch.abs(
record_rmse_loss - rmse_loss) < 0.0001 or rmse_loss < record_rmse_loss or iteration % 10000 == 0:
print(f'Saving to {output_path}')
save_checkpoint(output_path, (epoch), iteration, model, optimizer)
if rmse_loss < record_rmse_loss:
record_rmse_loss = rmse_loss
# print loss
print(" Iter[%06d/%06d], Epoch[%06d], Time[%06d], learning rate : %.9f, Train Loss: %.9f, "
"Test RMSE: %.9f, Test PSNR: %.9f, Test MRAE: %.9f, Test SAM: %.9f "
% (iteration, total_iteration, epoch, epoch_time, lr, losses.avg, rmse_loss, psnr_loss, mrae_loss, sam_loss))
logger.info(" Iter[%06d/%06d], Epoch[%06d], Time[%06d], learning rate : %.9f, Train Loss: %.9f, "
"Test RMSE: %.9f, Test PSNR: %.9f, Test MRAE: %.9f, Test SAM: %.9f "
% (iteration, total_iteration, epoch, epoch_time, lr, losses.avg, rmse_loss, psnr_loss, mrae_loss, sam_loss))
def Validate(val_loader, model, mask):
model.eval()
losses_rmse = AverageMeter()
losses_psnr = AverageMeter()
losses_mrae = AverageMeter()
losses_sam = AverageMeter()
for i, (HSIs) in enumerate(val_loader):
HSIs = HSIs.cuda()
#selecte the sub-patches radomly
mask_patch = data_processing.get_random_mask_patches(mask=mask, image_size=opt.image_size, patch_size=opt.train_patch_size, batch_size=opt.batch_size)
#Generate the measurements using traning HSIs and selected sub-pattern
inputs, targets = data_processing.get_mos_hsi(hsi=HSIs, mask=mask_patch, sigma=opt.sigma, mos_size=opt.valid_patch_size[0], hsi_input_size=opt.valid_patch_size[0], hsi_target_size=opt.valid_patch_size[0])
with torch.no_grad():
outputs = model(inputs, mask_patch)
loss_rmse = criterion_rmse(outputs, targets)
loss_psnr = criterion_psnr(outputs, targets)
loss_mrae = criterion_mrae(outputs, targets)
loss_sam = criterion_sam(outputs, targets)
losses_psnr.update(loss_psnr.data)
losses_rmse.update(loss_rmse.data)
losses_mrae.update(loss_mrae.data)
losses_sam.update(loss_sam.data)
return losses_rmse.avg, losses_psnr.avg, losses_mrae.avg, losses_sam.avg
if __name__ == '__main__':
main()