-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_0D_predictor.py
337 lines (280 loc) · 13.5 KB
/
train_0D_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import torch
import argparse
import numpy as np
import pandas as pd
from src.config import Config
from src.nn_env.utility import preparing_0D_dataset, get_range_of_output
from src.nn_env.dataset import DatasetFor0D, DatasetForMultiStepPred
from src.nn_env.transformer import Transformer
from src.nn_env.NStransformer import NStransformer
from src.nn_env.SCINet import SimpleSCINet
from src.nn_env.train import train
from src.nn_env.loss import CustomLoss
from src.nn_env.forgetting import DFwrapper
from src.nn_env.evaluate import evaluate, evaluate_multi_step
from src.nn_env.predict import generate_shot_data_from_real, generate_shot_data_from_self
from torch.utils.data import DataLoader
import warnings
warnings.filterwarnings(action = 'ignore')
def parsing():
parser = argparse.ArgumentParser(description="training NN based environment - 0D predictor")
# tag
parser.add_argument("--tag", type = str, default = "")
# gpu allocation
parser.add_argument("--gpu_num", type = int, default = 0)
# cpu workers per gpu
parser.add_argument("--num_workers", type = int, default = 4)
# target
parser.add_argument("--objective", type = str, default = "params-control", choices = ['params-control', 'shape-control', 'multi-objective'])
# training setup
parser.add_argument("--batch_size", type = int, default = 1024)
parser.add_argument("--lr", type = float, default = 2e-4)
parser.add_argument("--num_epoch", type = int, default = 32)
parser.add_argument("--verbose", type = int, default = 8)
parser.add_argument("--max_norm_grad", type = float, default = 1.0)
parser.add_argument("--multi_step_validation", type = bool, default = False)
parser.add_argument("--evaluate_multi_step", type = bool, default = False)
# test shot num
parser.add_argument("--test_shot_num", type = int, default = 30399)
# scheduler for training
parser.add_argument("--gamma", type = float, default = 0.95)
parser.add_argument("--step_size", type = int, default = 8)
# directory
parser.add_argument("--root_dir", type = str, default = "./weights/")
# model
parser.add_argument("--model", type = str, default = "Transformer", choices = ['Transformer', 'SCINet', 'NStransformer'])
# model properties
parser.add_argument("--seq_len", type = int, default = 10)
parser.add_argument("--pred_len", type = int, default = 1)
parser.add_argument("--interval", type = int, default = 3)
# Forgetting setup
parser.add_argument("--use_forgetting", type = bool, default = False)
parser.add_argument("--scale_forgetting", type = float, default = 0.1)
# scaling
parser.add_argument("--use_scaler", type = bool, default = True)
parser.add_argument("--scaler", type = str, default = 'Robust', choices = ['Standard', 'Robust', 'MinMax'])
args = vars(parser.parse_args())
return args
# torch device state
print("=============== Device setup ===============")
print("torch device avaliable : ", torch.cuda.is_available())
print("torch current device : ", torch.cuda.current_device())
print("torch device num : ", torch.cuda.device_count())
# torch cuda initialize and clear cache
torch.cuda.init()
torch.cuda.empty_cache()
if __name__ == "__main__":
args = parsing()
# device allocation
if(torch.cuda.device_count() >= 1):
device = "cuda:{}".format(args['gpu_num'])
else:
device = 'cpu'
# configuration
config = Config()
# load dataset for training
print("=============== Load dataset ===============")
df = pd.read_csv("./dataset/KSTAR_rl_control_ts_data_extend.csv").reset_index()
df_disruption = pd.read_csv("./dataset/KSTAR_Disruption_Shot_List_2022.csv", encoding='euc-kr').reset_index()
# columns for use
cols_0D = config.input_params[args['objective']]['state']
cols_control = config.input_params[args['objective']]['control']
# load dataset
ts_train, ts_valid, ts_test, scaler_0D, scaler_ctrl = preparing_0D_dataset(df, cols_0D, cols_control, args['scaler'])
seq_len = args['seq_len']
pred_len = args['pred_len']
interval = args['interval']
batch_size = args['batch_size']
pred_cols = cols_0D
# while training, only single-step prediction is used
train_data = DatasetFor0D(ts_train.copy(deep = True), df_disruption, seq_len, seq_len + pred_len, pred_len, cols_0D, cols_control, interval, scaler_0D, scaler_ctrl)
# Meanwhile, validation and test process will use both single-step and multi-step prediction
if args['multi_step_validation']:
valid_data = DatasetForMultiStepPred(ts_valid.copy(deep = True), df_disruption, seq_len, seq_len + pred_len, seq_len * 4, cols_0D, cols_control, interval, scaler_0D, scaler_ctrl)
else:
valid_data = DatasetFor0D(ts_valid.copy(deep = True), df_disruption, seq_len, seq_len + pred_len, pred_len, cols_0D, cols_control, interval, scaler_0D, scaler_ctrl)
if args['multi_step_validation']:
test_data = DatasetForMultiStepPred(ts_test.copy(deep = True), df_disruption, seq_len, seq_len + pred_len, seq_len * 4, cols_0D, cols_control, interval, scaler_0D, scaler_ctrl)
else:
if args['evaluate_multi_step']:
test_data = DatasetForMultiStepPred(ts_test.copy(deep = True), df_disruption, seq_len, seq_len + pred_len, seq_len * 4, cols_0D, cols_control, interval, scaler_0D, scaler_ctrl)
else:
test_data = DatasetFor0D(ts_test.copy(deep = True), df_disruption, seq_len, seq_len + pred_len, pred_len, cols_0D, cols_control, interval, scaler_0D, scaler_ctrl)
print("=============== Dataset information ===============")
print("train data : ", train_data.__len__())
print("valid data : ", valid_data.__len__())
print("test data : ", test_data.__len__())
train_loader = DataLoader(train_data, batch_size = batch_size, num_workers = args['num_workers'], shuffle = True, pin_memory = True)
valid_loader = DataLoader(valid_data, batch_size = batch_size, num_workers = args['num_workers'], shuffle = True, pin_memory = True)
test_loader = DataLoader(test_data, batch_size = batch_size, num_workers = args['num_workers'], shuffle = True, pin_memory = True)
# data range
ts_data = pd.concat([train_data.ts_data, valid_data.ts_data, test_data.ts_data], axis = 1)
range_info = get_range_of_output(ts_data, cols_0D)
# transformer model argument
if args['model'] == 'Transformer':
model = Transformer(
n_layers = config.model_config[args['model']]['n_layers'],
n_heads = config.model_config[args['model']]['n_heads'],
dim_feedforward = config.model_config[args['model']]['dim_feedforward'],
dropout = config.model_config[args['model']]['dropout'],
RIN = config.model_config[args['model']]['RIN'],
input_0D_dim = len(cols_0D),
input_0D_seq_len = seq_len,
input_ctrl_dim = len(cols_control),
input_ctrl_seq_len = seq_len + pred_len,
output_0D_pred_len = pred_len,
output_0D_dim = len(cols_0D),
feature_dim = config.model_config[args['model']]['feature_0D_dim'],
range_info = range_info,
noise_mean = config.model_config[args['model']]['noise_mean'],
noise_std = config.model_config[args['model']]['noise_std'],
kernel_size = config.model_config[args['model']]['kernel_size']
)
elif args['model'] == 'NStransformer':
model = NStransformer(
n_layers = config.model_config[args['model']]['n_layers'],
n_heads = config.model_config[args['model']]['n_heads'],
dim_feedforward = config.model_config[args['model']]['dim_feedforward'],
dropout = config.model_config[args['model']]['dropout'],
input_0D_dim = len(cols_0D),
input_0D_seq_len = seq_len,
input_ctrl_dim = len(cols_control),
input_ctrl_seq_len = seq_len + pred_len,
output_0D_pred_len = pred_len,
output_0D_dim = len(cols_0D),
feature_0D_dim = config.model_config[args['model']]['feature_0D_dim'],
feature_ctrl_dim = config.model_config[args['model']]['feature_ctrl_dim'],
range_info = range_info,
noise_mean = config.model_config[args['model']]['noise_mean'],
noise_std = config.model_config[args['model']]['noise_std'],
kernel_size = config.model_config[args['model']]['kernel_size']
)
elif args['model'] == 'SCINet':
model = SimpleSCINet(
output_len = pred_len,
input_len = seq_len,
output_dim = len(cols_0D),
input_0D_dim = len(cols_0D),
input_ctrl_dim = len(cols_control),
hid_size = config.model_config[args['model']]['hid_size'],
num_levels = config.model_config[args['model']]['num_levels'],
num_decoder_layer = config.model_config[args['model']]['num_decoder_layer'],
concat_len = config.model_config[args['model']]['concat_len'],
groups = config.model_config[args['model']]['groups'],
kernel = config.model_config[args['model']]['kernel'],
dropout = config.model_config[args['model']]['dropout'],
single_step_output_One = config.model_config[args['model']]['single_step_output_One'],
positionalE = config.model_config[args['model']]['positionalE'],
modified = config.model_config[args['model']]['modified'],
RIN = config.model_config[args['model']]['RIN'],
noise_mean = config.model_config[args['model']]['noise_mean'],
noise_std = config.model_config[args['model']]['noise_std']
)
# If using differentiate forgetting, wrapper is called
if args['use_forgetting']:
model = DFwrapper(model, args['scale_forgetting'])
model.summary()
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr = args['lr'])
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size = args['step_size'], gamma=args['gamma'])
import os
# tag labeling
tag = "{}_seq_{}_pred_{}_interval_{}_{}".format(args['model'], args['seq_len'], args['pred_len'], args['interval'], args['objective'])
if config.model_config[args['model']]['RIN']:
tag = "{}_RevIN".format(tag)
if args['use_forgetting']:
tag = "{}_DF".format(tag)
if args['use_scaler']:
tag = "{}_{}".format(tag, args['scaler'])
if args['multi_step_validation']:
tag = "{}_msv".format(tag)
if len(args['tag']) > 0:
tag = "{}_{}".format(tag, args['tag'])
save_best_dir = os.path.join(args['root_dir'], "{}_best.pt".format(tag))
save_last_dir = os.path.join(args['root_dir'], "{}_last.pt".format(tag))
tensorboard_dir = os.path.join("./runs/", "tensorboard_{}".format(tag))
loss_fn = torch.nn.MSELoss(reduction = 'mean')
if os.path.exists(save_last_dir):
pass
# model.load_state_dict(torch.load(save_last_dir))
print("=============== Training process ===============")
print("Process : {}".format(tag))
train_loss, valid_loss = train(
train_loader,
valid_loader,
model,
optimizer,
scheduler,
loss_fn,
device,
args['num_epoch'],
args['verbose'],
save_best = save_best_dir,
save_last = save_last_dir,
max_norm_grad = args['max_norm_grad'],
tensorboard_dir = tensorboard_dir,
test_for_check_per_epoch = test_loader,
multi_step_validation = args['multi_step_validation']
)
model.load_state_dict(torch.load(save_best_dir))
print("=============== Evaluation process ===============")
# evaluation process
if args['multi_step_validation']:
test_loss, mse, rmse, mae, r2 = evaluate_multi_step(
test_loader,
model,
optimizer,
loss_fn,
device,
)
else:
if args['evaluate_multi_step']:
test_loss, mse, rmse, mae, r2 = evaluate_multi_step(
test_loader,
model,
optimizer,
loss_fn,
device,
)
else:
test_loss, mse, rmse, mae, r2 = evaluate(
test_loader,
model,
optimizer,
loss_fn,
device,
)
print("=============== Auto-regressive prediction ===============")
shot_num = args['test_shot_num']
df_shot = df[df.shot == shot_num].reset_index(drop = True)
# virtual experiment shot
generate_shot_data_from_self(
model,
df_shot,
seq_len,
seq_len + pred_len,
pred_len,
cols_0D,
cols_control,
scaler_0D,
scaler_ctrl,
device,
"shot number : {}".format(shot_num),
save_dir = os.path.join("./result/", "{}_without_real_data.png".format(tag))
)
print("=============== Feedforward prediction ===============")
# feedback from real data
generate_shot_data_from_real(
model,
df_shot,
seq_len,
seq_len + pred_len,
pred_len,
cols_0D,
cols_control,
scaler_0D,
scaler_ctrl,
device,
"shot number : {}".format(shot_num),
save_dir = os.path.join("./result/", "{}_with_real_data.png".format(tag))
)