forked from zjuchenyuan/pubstats
-
Notifications
You must be signed in to change notification settings - Fork 0
/
top_authors.py
355 lines (319 loc) · 13.4 KB
/
top_authors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#!/usr/bin/python3
import pickle
from statistics import median, mean
from datetime import date
import csv
import matplotlib.pyplot as plt
from pubs import Pub, Author, CONFERENCES, CONFERENCES_SHORT, AREA_TITLES
# TODO normalize data on per-area basis
# Tried for different sub areas but the areas are similar enough so that
# normalization does not change much (and normalization opens up questions
# about interpretation).
# break publications (on venue basis) into per-author statistics
def parse_authors(pubs):
authors = {}
# Load aux data from cs rankings first
aux_data = {}
max_year = 0
total_pubs = {}
with open('csrankings.csv', 'r') as f:
csvaliases = csv.reader(f)
for row in csvaliases:
if row[0] == 'alias':
continue
if row[0].find('[') != -1:
name = row[0][0:row[0].find('[')-1]
else:
name = row[0]
aux_data[name] = (row[1], row[2], row[3])
# Load aux data as parsed from DBLP (as fallback)
with open('pickle/affiliations.pickle', 'rb') as f:
aux_data2 = pickle.load(f)
f.close()
# parse pubs and split into authors
for pub in pubs:
# basic statistics
if not pub.year in total_pubs:
total_pubs[pub.year] = 0
total_pubs[pub.year] += 1
# break up into authors
for name in pub.authors:
if name not in authors:
if name in aux_data:
authors[name] = Author(name, aux_data[name])
elif name in aux_data2:
authors[name] = Author(name, aux_data2[name])
else:
authors[name] = Author(name, ('', '', ''))
authors[name].add_publication(pub.venue, pub.year, pub.title, pub.authors)
if pub.year > max_year:
max_year = pub.year
# now aggreate author data
per_year_authors = {}
for name in authors:
for year in authors[name].years:
if not year in per_year_authors:
per_year_authors[year] = []
if not name in per_year_authors[year]:
per_year_authors[year].append(name)
per_author_pubs_years = {}
for name in authors:
for year in authors[name].years:
if not year in per_author_pubs_years:
per_author_pubs_years[year] = []
per_author_pubs_years[year].append(authors[name].years[year])
# aggregate top N values and return yearly medians
top_values = {}
for year in per_author_pubs_years:
# year = (total, max, median, average)
top100mean = round(mean(sorted(per_author_pubs_years[year], reverse=True)[0:50])*100)/100
top_values[year] = (total_pubs[year], max(per_author_pubs_years[year]), round(mean(per_author_pubs_years[year])*100)/100, top100mean, len(per_year_authors[year]))
return (authors, max_year, top_values)
import os
YEAR = os.getenv("YEAR", None)
if YEAR:
YEAR = int(YEAR)
print("YEAR start:", YEAR)
def top_authors(authors, cons='', title='Top Authors', tname='templates/top-authors.html', fname='www/top-authors.html', nr_years=20):
if YEAR:
fname = fname.replace("/", f"/{YEAR}_")
ranked = {}
current_year = 0 # max year we have data of
# walk through all authors and sort by class/ranking
for name in authors:
total = authors[name].get_total()
if YEAR:
author = authors[name]
recent = 0
for year in author.years.keys():
if year>=YEAR:
recent += author.years[year]
total = recent
if total > 2:
if total not in ranked:
ranked[total] = []
ranked[total].append(authors[name])
if max(authors[name].years.keys()) > current_year:
current_year = max(authors[name].years.keys())
author_entry = '''<tr>
<td>{}</td>
<td class="name">{}</td>
<td class="name">{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>'''
author_head = '''<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Affiliation</th>
<th>Total</th>
<th>(A)</th>
<th>(Rel)</th>'''
author_head = author_head + '<th>' + str(current_year-2004) + '-' + str(current_year-2000) + '</th>'
author_head = author_head + '<th>(A5)</th><th>(Rel5)</th>'
for year in range(current_year, current_year-nr_years, -1):
author_head = author_head + '<th>' + str(year-2000) + '</th>'
author_entry += '<td>{}</td>'
author_head += '<th><='+str(current_year-2000-nr_years)+'</th>'
author_entry += '<td>{}</td>'
author_head += '</tr></thead>'
author_entry += '</tr>'
content = author_head
rank = 1
for number in sorted(ranked.keys(), reverse = True):
for author in ranked[number]:
values = [rank, author.name, author.affiliation, number]
# Calculate median
median_data = []
median_data5 = []
for year in author.nr_authors_year:
median_data = median_data + author.nr_authors_year[year]
if year > current_year-5:
median_data5 = median_data5 + author.nr_authors_year[year]
med = median(median_data)
values.append(round(med))
values.append('{:.2f}'.format(number/sum(median_data)*number))
# summary of last 5 years
recent = 0
for year in author.years.keys():
if year > current_year-5:
recent += author.years[year]
if recent == 0:
values.append('')
else:
values.append(recent)
if len(median_data5) != 0:
med5 = round(median(median_data5))
else:
med5 = ''
values.append(med5)
if recent == 0:
values.append('')
else:
values.append('{:.2f}'.format(recent/sum(median_data5)*recent))
# last 20 years individually
for year in range(current_year, current_year-nr_years, -1):
if year not in author.years:
values.append('')
else:
values.append(author.years[year])
# add ancient years
ancient = 0
for year in author.years.keys():
if year <= current_year-nr_years:
ancient += author.years[year]
if ancient == 0:
values.append('')
else:
values.append(ancient)
content += author_entry.format(*values)
rank += len(ranked[number])
template = open(tname, 'r').read()
template = template.replace('XXXTITLEXXX', title)
template = template.replace('XXXCONTENTXXX', content)
template = template.replace('XXXDATEXXX', date.today().strftime("%Y-%m-%d"))
template = template.replace('XXXTOPCONSXXX', cons)
fout = open(fname, 'w')
fout.write(template)
def stat_table(top_values, max_year, nr_years=20):
table_head = '<thead><tr><th>Area</th><th>Total</th>'
table_entry = '<tr{}><td class="name">{}</td><td>{}</td>'
for year in range(max_year, max_year-nr_years, -1):
table_head += '<th class="name">'+str(year-2000)+'</th>'
table_entry += '<td>{}</td>'
table_head += '<th class="name"><'+str(max_year-2000-nr_years)+'</th>'
table_head += '</tr></thead>'
table_entry += '<td>{}</td></tr>'
content = table_head
areas = list(CONFERENCES.keys())
areas.append('sys')
fig_tot = {}
fig_max = {}
fig_avg50 = {}
fig_auth = {}
for area in areas:
ancient_total = 0
fresh_total = 0
for year in top_values[area]:
if year < max_year-nr_years:
ancient_total += top_values[area][year][0]
else:
fresh_total += top_values[area][year][0]
row_tot = ['', AREA_TITLES[area], fresh_total+ancient_total]
row_max = [' class="light"', '', 'max/a']
row_avg = [' class="light"', '', 'avg/a']
row_avg50a = [' class="light"', '', 'avg/a50']
row_auth = [' class="light"', '', '#a']
for year in range(max_year, max_year-nr_years, -1):
if not year in top_values[area]:
top_values[area][year] = ('', '', '', '', '')
row_tot.append(top_values[area][year][0])
row_max.append(top_values[area][year][1])
row_avg.append(top_values[area][year][2])
row_avg50a.append(top_values[area][year][3])
row_auth.append(top_values[area][year][4])
row_tot.append(ancient_total)
row_max.append('')
row_avg.append('')
row_avg50a.append('')
row_auth.append('')
content += table_entry.format(*row_tot)
content += table_entry.format(*row_max)
content += table_entry.format(*row_avg)
content += table_entry.format(*row_avg50a)
content += table_entry.format(*row_auth)
for i in range(len(row_tot)):
if row_tot[i] == '':
row_tot[i] = 0
if row_max[i] == '':
row_max[i] = 0
if row_avg50a[i] == '':
row_avg50a[i] = 0
if row_auth[i] == '':
row_auth[i] = 0
fig_tot[area] = row_tot[3:-1]
fig_max[area] = row_max[3:-1]
fig_avg50[area] = row_avg50a[3:-1]
fig_auth[area] = row_auth[3:-1]
stat_figure(fig_tot, 'Total number of publications per year', max_year, nr_years, fname='stat-tot.png')
stat_figure(fig_max, 'Maximum number of publications of an author per year', max_year, nr_years, average=False, fname='stat-max.png')
stat_figure(fig_avg50, 'Average number of publications per year for the top 50 authors', max_year, nr_years, average=False, fname='stat-avg50.png')
stat_figure(fig_auth, 'Average number of active authors per year', max_year, nr_years, fname='stat-auth.png')
stat_table = '''<div class="text-center"><img src="stat-tot.png" width="800px"/><br/><br/></div>
<div class="text-center"><img src="stat-max.png" width="800px"/><br/><br/></div>
<div class="text-center"><img src="stat-avg50.png" width="800px"/><br/><br/></div>
<div class="text-center"><img src="stat-auth.png" width="800px"/><br/><br/></div>
'''
return (content, stat_table)
def stat_figure(fig_data, title, max_year, nr_years, average=True, fname=''):
xaxis = []
for year in range(max_year, max_year-nr_years, -1):
xaxis.append(year)
plt.figure(figsize=(12, 5))
plt.title(title)
plt.xticks(xaxis, xaxis)
plt.xlabel('Year')
for area in fig_data:
lbl = area
lwdt = 1.5
if area == 'sys':
if average:
for i in range(len(fig_data[area])):
fig_data[area][i] = fig_data[area][i]/(len(fig_data)-1)
lbl = 'avg(sys)'
else:
lbl = 'all(sys)'
lwdt = 4
plt.plot(xaxis, fig_data[area], label=lbl, linewidth=lwdt)
plt.legend()
if fname == '':
plt.show()
else:
plt.savefig('www/'+fname, bbox_inches="tight")
plt.clf()
if __name__ == '__main__':
all_pubs = []
top_values = {}
#for area in CONFERENCES:
for area in ['sys_sec', 'sec_withjournal', 'ccfa', 'tsinghuaa']:
# Load pickeled data
with open('pickle/pubs-{}.pickle'.format(area), 'rb') as f:
pubs = pickle.load(f)
f.close()
all_pubs += pubs
# Prepare per-author information
authors, _, top_values[area] = parse_authors(pubs)
print('Analyzed a total of {} authors for {}'.format(len(authors), area))
# Pretty print HTML
top_authors(authors, cons = ', '.join(CONFERENCES_SHORT[area]), title = AREA_TITLES[area], fname = 'www/top-authors-{}.html'.format(area))
exit(0)
# Prepare per-author information
authors, max_year, top_values['sys'] = parse_authors(all_pubs)
print('Analyzed a total of {} authors'.format(len(authors)))
# Pretty print HTML
allcons = []
for area in CONFERENCES:
allcons = allcons + CONFERENCES_SHORT[area]
# No researchers from Geneva, Basel, St. Gallen, or Fribourg
affils = ['ETH Zurich', 'ETH Zürich', 'EPFL', 'Swiss Federal Institute of Technology in Lausanne', 'École Polytechnique Fédérale de Lausanne', 'Università della Svizzera italiana', 'University of Zurich', 'University of Bern']
filtered_authors = {}
for author in authors:
if authors[author].affiliation in affils:
filtered_authors[author] = authors[author]
top_authors(authors, cons = ', '.join(allcons), title = 'Systems (All Top Conferences)', fname = 'www/top-authors-sys.html')
top_authors(filtered_authors, cons = ', '.join(allcons), title = 'Systems (All Top Conferences, CH)', fname = 'www/top-authors-sys-ch.html')
content = ''
for area in AREA_TITLES:
content = content + '<li><a href="./top-authors-' + area + '.html">' + AREA_TITLES[area] + '</a></li>\n'
template = open('templates/top-index.html', 'r').read()
template = template.replace('XXXCONTENTXXX', content)
stat_table, stat_img = stat_table(top_values, max_year)
template = template.replace('XXXAREASTATSXXX', stat_table)
template = template.replace('XXXAREAIMGSXXX', stat_img)
template = template.replace('XXXDATEXXX', date.today().strftime("%Y-%m-%d"))
fout = open('www/index.html', 'w')
fout.write(template)