-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
395 lines (305 loc) · 14.1 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
'''
Training script for CIFAR-10/100
Copyright (c) Wei YANG, 2017
'''
from __future__ import print_function
import argparse
import os
import shutil
import time
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import models.cifar as models
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig
from data.ori_dataset import ori_folder
from data.wm_dataset import wm_folder, wm_subfolder, adv_subfolder
from models.ReflectionUNet import UnetGenerator2,UnetGenerator_IN2
from torch.utils.data import DataLoader
import shutil
from PIL import Image, ImageFilter
import cv2
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch CIFAR10/100 Training')
# Datasets
parser.add_argument('-d', '--dataset', default='cifar10', type=str)
parser.add_argument('--color', action='store_true', help='multi-target label')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--ratio', type=int,default=1, help='train with trigger every "ratio" batch')
# Optimization options
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--train-batch', default=128, type=int, metavar='N',
help='train batchsize 128')
parser.add_argument('--test-batch', default=100, type=int, metavar='N',
help='test batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--drop', '--dropout', default=0, type=float,
metavar='Dropout', help='Dropout ratio')
parser.add_argument('--schedule', type=int, nargs='+', default=[150, 225],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
# Checkpoints
parser.add_argument('-c', '--checkpoint', default='/data-x/g11/zhangjie/ECCV/exp_chk/backdoor/Classification/Cifar/eccv_green/10class',
type=str, metavar='PATH', help='path to save checkpoint (default: checkpoint)')
parser.add_argument('-r', '--remark', default='try', type=str, help='comment')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--task', default="BASE", type=str, help='train strategy , w/o transform ')
parser.add_argument('--wm_tst', default="../../backdoor_generation/dataset/infect_cifar10/one_poison_label/Up_Rp_UNet_L1_incremental/1/green_airplane/test_trigger"
, type=str, help='trigger test dataset')
# Architecture
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('--depth', type=int, default=29, help='Model depth.')
parser.add_argument('--block-name', type=str, default='Bottleneck',
help='the building block for Resnet and Preresnet: BasicBlock, Bottleneck (default: Basicblock for cifar10/cifar100)')
parser.add_argument('--cardinality', type=int, default=8, help='Model cardinality (group).')
parser.add_argument('--widen-factor', type=int, default=4, help='Widen factor. 4 -> 64, 8 -> 128, ...')
parser.add_argument('--growthRate', type=int, default=12, help='Growth rate for DenseNet.')
parser.add_argument('--compressionRate', type=int, default=2, help='Compression Rate (theta) for DenseNet.')
# Miscs
parser.add_argument('--manualSeed', type=int,default=6, help='manual seed')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
#Device options
parser.add_argument('--gpu-id', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--original', action='store_true', help='original model')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
# Validate dataset
assert args.dataset == 'cifar10' or args.dataset == 'cifar100', 'Dataset can only be cifar10 or cifar100.'
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
np.random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
def main():
num_classes = 10
# Model
print("==> creating model '{}'".format(args.arch))
if args.arch.startswith('resnext'):
model = models.__dict__[args.arch](
cardinality=args.cardinality,
num_classes=num_classes,
depth=args.depth,
widen_factor=args.widen_factor,
dropRate=args.drop,
)
elif args.arch.startswith('densenet'):
model = models.__dict__[args.arch](
num_classes=num_classes,
depth=22,
growthRate=args.growthRate,
compressionRate=args.compressionRate,
dropRate=args.drop,
)
elif args.arch.startswith('wrn'):
model = models.__dict__[args.arch](
num_classes=num_classes,
depth=args.depth,
widen_factor=args.widen_factor,
dropRate=args.drop,
)
elif args.arch.endswith('resnet'):
model = models.__dict__[args.arch](
num_classes=num_classes,
depth=args.depth,
block_name=args.block_name,
)
else:
model = models.__dict__[args.arch](num_classes=num_classes)
model = torch.nn.DataParallel(model).cuda()
cudnn.benchmark = True
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
criterion = nn.CrossEntropyLoss()
chkdir = os.path.dirname(args.resume)
# Data
print('==> Preparing dataset %s' % args.dataset)
transform_test1 = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test2 = transforms.Compose([
transforms.RandomHorizontalFlip(p=1),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test3 = transforms.Compose([
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test4 = transforms.Compose([
transforms.Resize(28),
transforms.Pad(2),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test5 = transforms.Compose([
transforms.RandomCrop(28),
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
# transforms.RandomHorizontalFlip(p=1),
# transforms.RandomRotation(15),
# transforms.RandomCrop(200),
# transforms.Resize(224),
# transforms.Resize(200),
# transforms.Pad((18,18,6,6)), #left top right bottom
AddGaussianNoise(mean=0, variance=1, amplitude=10),
# MyGaussianBlur(radius=5),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
data_aug1 = 'baseline'
data_aug2 = 'Hflip'
data_aug3 = 'rot15'
data_aug4 = 'shrink_pad2'
data_aug5 = 'crop28_resize32'
data_aug = 'guassian10'
# data_aug = 'blur3'
# transform_test_list = []
# transform_test_list= [transform_test1,transform_test2,transform_test3,transform_test4,transform_test5]
# data_aug_list = []
# data_aug_list = [data_aug1,data_aug2,data_aug3,data_aug4,data_aug5]
# guassian
transform_test_list= [transform_test]
data_aug_list = [data_aug]
test_Trigger_acc=[]
test_Clean_acc=[]
test_clean = "../../backdoor_generation/dataset/cifar10/test"
test_wm = args.wm_tst
# print(transform_test)
# print(data_aug)
for i in range(1):
transform_test = transform_test_list[i]
data_aug = data_aug_list[i]
print(transform_test)
print(data_aug)
wm_test_dataset = wm_folder(test_wm,transform_test)
test_dataset = ori_folder(test_clean,transform_test)
# if args.original or args.color :
# wm_test_dataset = ori_folder(test_wm,transform_test)
# else:
# wm_test_dataset = wm_folder(test_wm,transform_test)
testloader = DataLoader(test_dataset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
wm_testloader = DataLoader(wm_test_dataset,batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
metric_name = os.path.join(chkdir,'test_metric_'+ data_aug+'.txt')
f = open(metric_name, 'w+')
print('trigger dataset',test_wm, file=f)
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
print("data transform: ", transform_test, file=f)
test_loss2, test_acc2 = test(testloader, model, criterion, use_cuda)
print("test_clean: ", test_acc2)
print("test_clean: ", test_acc2, file=f)
test_Clean_acc.append(test_acc2.cpu().numpy())
test_loss_wm2, test_acc_wm2 = test( wm_testloader, model, criterion, use_cuda)
print("test_Trigger: ", test_acc_wm2)
print("test_Trigger: ", test_acc_wm2, file=f)
test_Trigger_acc.append(test_acc_wm2.cpu().numpy())
test_Clean_acc_ave = np.mean(test_Clean_acc)
test_Trigger_acc_ave = np.mean(test_Trigger_acc)
metric_name = os.path.join(chkdir,'test_metric_ave'+'.txt')
f = open(metric_name, 'w+')
print("aug_all: ", data_aug_list, file=f)
print("test_clean_all: ", test_Clean_acc, file=f)
print("test_clean_ave: ", test_Clean_acc_ave, file=f)
print("test_trigger_all: ", test_Trigger_acc, file=f)
print("test_trigger_ave: ", test_Trigger_acc_ave, file=f)
print("aug_all: ", data_aug_list)
print("test_clean_all: ", test_Clean_acc)
print("test_clean_ave: ", test_Clean_acc_ave)
print("test_trigger_all: ", test_Trigger_acc)
print("test_trigger_ave: ", test_Trigger_acc_ave)
# test_class_wm = test_wm
# # test_class_wm = test_clean
# # for classes in sorted(os.listdir(test_class_wm)):
# for i, classes in enumerate(os.listdir(test_class_wm)):
# d = os.path.join(test_class_wm, classes)
# if args.original or args.color :
# print("label",i)
# wm_test_class_dataset = adv_subfolder(d,i,transform_test)
# else:
# wm_test_class_dataset = wm_subfolder(d,transform_test)
# wm_class_testloader = DataLoader(wm_test_class_dataset,batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
# test_loss_class_wm, test_acc_class_wm = test( wm_class_testloader, model, criterion, use_cuda)
# print("Class:%s Accuracy:%02f"%(classes,test_acc_class_wm) )
# print("Class:%s Accuracy:%02f"%(classes,test_acc_class_wm), file=f )
def test(testloader, model, criterion, use_cuda):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)
# print(inputs.shape)
# compute output
with torch.no_grad():
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.data, inputs.size(0))
top1.update(prec1, inputs.size(0))
top5.update(prec5, inputs.size(0))
return (losses.avg, top1.avg)
class AddGaussianNoise(object):
def __init__(self, mean=0.0, variance=1.0, amplitude=1.0):
self.mean = mean
self.variance = variance
self.amplitude = amplitude
def __call__(self, img):
img = np.array(img)
h, w, c = img.shape
N = self.amplitude * np.random.normal(loc=self.mean, scale=self.variance, size=(h, w, 1))
N = np.repeat(N, c, axis=2)
img = N + img
img[img > 255] = 255 # 避免有值超过255而反转
img = Image.fromarray(img.astype('uint8')).convert('RGB')
return img
class MyGaussianBlur(ImageFilter.Filter):
def __init__(self, radius=5):
self.radius = radius
def __call__(self, img):
img = cv2.cvtColor(np.asarray(img),cv2.COLOR_RGB2BGR)
img = cv2.blur(img,(self.radius,self.radius))
img = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
return img
if __name__ == '__main__':
main()