-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathalign_face.py
39 lines (28 loc) · 1.44 KB
/
align_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
""" Create a cropped-image centered on a face.
"""
import os
import dlib
from pathlib import Path
import argparse
from utils.shape_predictor import align_face
from utils.model_utils import download_weight
parser = argparse.ArgumentParser(description='Align_face')
parser.add_argument('--input_dir', type=str, default='input', help='directory with unprocessed images')
parser.add_argument('--output_dir', type=str, default='input_aligned', help='output directory')
parser.add_argument('--output_size', '-s', type=int, default=1024, choices=[2 ** n for n in range(5, 11)],
help='size to downscale the input images to, must be power of 2')
parser.add_argument('--seed', type=int, default=127,
help='Random seed to use (for repeatability)')
parser.add_argument('--cache_dir', type=str, default='pretrained_models', help='cache directory for model weights')
args = parser.parse_args()
cache_dir = Path(args.cache_dir)
cache_dir.mkdir(parents=True, exist_ok=True)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
print("Downloading Shape Predictor")
predictor_weight = os.path.join(cache_dir, 'shape_predictor_68_face_landmarks.dat')
download_weight(predictor_weight)
predictor = dlib.shape_predictor(predictor_weight)
for im in Path(args.input_dir).glob("*.*"):
face = align_face(str(im), predictor, output_size=args.output_size)
face.save(Path(args.output_dir) / (im.stem + f".png"))