-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_trajectory_calvin.py
205 lines (183 loc) · 7.11 KB
/
main_trajectory_calvin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""Main script for trajectory optimization."""
import os
import random
import pickle
import torch
import torch.optim as optim
from matplotlib import pyplot as plt
import numpy as np
from datasets.dataset_calvin import CalvinDataset
from main_trajectory import TrainTester as BaseTrainTester
from main_trajectory import traj_collate_fn, fig_to_numpy, Arguments
from utils.common_utils import (
load_instructions, get_gripper_loc_bounds
)
def load_instructions(instructions, split):
instructions = pickle.load(
open(f"{instructions}/{split}.pkl", "rb")
)['embeddings']
return instructions
class TrainTester(BaseTrainTester):
"""Train/test a trajectory optimization algorithm."""
def __init__(self, args):
"""Initialize."""
super().__init__(args)
def get_datasets(self):
"""Initialize datasets."""
# Load instruction, based on which we load tasks/variations
train_instruction = load_instructions(
self.args.instructions, 'training'
)
test_instruction = load_instructions(
self.args.instructions, 'validation'
)
taskvar = [
("A", 0), ("B", 0), ("C", 0), ("D", 0),
]
# Initialize datasets with arguments
train_dataset = CalvinDataset(
root=self.args.dataset,
instructions=train_instruction,
taskvar=taskvar,
max_episode_length=self.args.max_episode_length,
cache_size=self.args.cache_size,
max_episodes_per_task=self.args.max_episodes_per_task,
num_iters=self.args.train_iters,
cameras=self.args.cameras,
training=True,
image_rescale=tuple(
float(x) for x in self.args.image_rescale.split(",")
),
return_low_lvl_trajectory=True,
dense_interpolation=bool(self.args.dense_interpolation),
interpolation_length=self.args.interpolation_length,
relative_action=bool(self.args.relative_action)
)
test_dataset = CalvinDataset(
root=self.args.valset,
instructions=test_instruction,
taskvar=taskvar,
max_episode_length=self.args.max_episode_length,
cache_size=self.args.cache_size_val,
max_episodes_per_task=self.args.max_episodes_per_task,
cameras=self.args.cameras,
training=False,
image_rescale=tuple(
float(x) for x in self.args.image_rescale.split(",")
),
return_low_lvl_trajectory=True,
dense_interpolation=bool(self.args.dense_interpolation),
interpolation_length=self.args.interpolation_length,
relative_action=bool(self.args.relative_action)
)
return train_dataset, test_dataset
def save_checkpoint(self, model, optimizer, step_id, new_loss, best_loss):
"""Save checkpoint if requested."""
if new_loss is None or best_loss is None or new_loss <= best_loss:
best_loss = new_loss
torch.save({
"weight": model.state_dict(),
"optimizer": optimizer.state_dict(),
"iter": step_id + 1,
"best_loss": best_loss
}, self.args.log_dir / "best.pth")
torch.save({
"weight": model.state_dict(),
"optimizer": optimizer.state_dict(),
"iter": step_id + 1,
"best_loss": best_loss
}, self.args.log_dir / '{:07d}.pth'.format(step_id))
torch.save({
"weight": model.state_dict(),
"optimizer": optimizer.state_dict(),
"iter": step_id + 1,
"best_loss": best_loss
}, self.args.log_dir / "last.pth")
return best_loss
def get_optimizer(self, model):
"""Initialize optimizer."""
optimizer_grouped_parameters = [
{"params": [], "weight_decay": 0.0, "lr": self.args.lr},
{"params": [], "weight_decay": self.args.wd, "lr": self.args.lr}
]
no_decay = ["bias", "LayerNorm.weight", "LayerNorm.bias"]
for name, param in model.named_parameters():
if any(nd in name for nd in no_decay):
optimizer_grouped_parameters[0]["params"].append(param)
else:
optimizer_grouped_parameters[1]["params"].append(param)
optimizer = optim.AdamW(optimizer_grouped_parameters)
return optimizer
def generate_visualizations(pred, gt, mask, box_size=0.05):
batch_idx = 0
images = []
for batch_idx in range(min(pred.shape[0], 5)):
cur_pred = pred[batch_idx].detach().cpu().numpy()
cur_gt = gt[batch_idx].detach().cpu().numpy()
cur_mask = mask[batch_idx].detach().cpu().numpy()
fig = plt.figure(figsize=(5, 5))
ax = plt.axes(projection='3d')
ax.scatter3D(
cur_pred[~cur_mask][:, 0],
cur_pred[~cur_mask][:, 1],
cur_pred[~cur_mask][:, 2],
color='red', label='pred'
)
ax.scatter3D(
cur_gt[~cur_mask][:, 0],
cur_gt[~cur_mask][:, 1],
cur_gt[~cur_mask][:, 2],
color='blue', label='gt'
)
center = cur_gt[~cur_mask].mean(0)
ax.set_xlim(center[0] - box_size, center[0] + box_size)
ax.set_ylim(center[1] - box_size, center[1] + box_size)
ax.set_zlim(center[2] - box_size, center[2] + box_size)
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])
plt.legend()
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
img = fig_to_numpy(fig, dpi=120)
plt.close()
images.append(img)
images = np.concatenate(images, axis=1)
return images.transpose(2, 0, 1)
if __name__ == '__main__':
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Arguments
args = Arguments().parse_args()
print("Arguments:")
print(args)
print("-" * 100)
if args.gripper_loc_bounds is None:
args.gripper_loc_bounds = np.array([[-2, -2, -2], [2, 2, 2]]) * 1.0
else:
args.gripper_loc_bounds = get_gripper_loc_bounds(
args.gripper_loc_bounds,
task=args.tasks[0] if len(args.tasks) == 1 else None,
buffer=args.gripper_loc_bounds_buffer,
)
log_dir = args.base_log_dir / args.exp_log_dir / args.run_log_dir
args.log_dir = log_dir
log_dir.mkdir(exist_ok=True, parents=True)
print("Logging:", log_dir)
print(
"Available devices (CUDA_VISIBLE_DEVICES):",
os.environ.get("CUDA_VISIBLE_DEVICES")
)
print("Device count", torch.cuda.device_count())
args.local_rank = int(os.environ["LOCAL_RANK"])
# Seeds
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
# DDP initialization
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
# Run
train_tester = TrainTester(args)
train_tester.main(collate_fn=traj_collate_fn)