|
| 1 | +#!/usr/bin/python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | + |
| 4 | +from core import * |
| 5 | + |
| 6 | +class GlobalNet: |
| 7 | + def __init__(self,state_dim,action_dim): |
| 8 | + """network""" |
| 9 | + self.net_dim = 256 |
| 10 | + self.learning_rate = 1e-4 |
| 11 | + self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 12 | + self.act = ActorPPO(state_dim, action_dim, self.net_dim) |
| 13 | + self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=self.learning_rate, ) # betas=(0.5, 0.99)) |
| 14 | + self.cri = CriticAdv(state_dim, self.net_dim) |
| 15 | + self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=self.learning_rate, ) # betas=(0.5, 0.99)) |
| 16 | + |
| 17 | +class AgentPPO: |
| 18 | + def __init__(self,net): |
| 19 | + max_buffer = 2**11 |
| 20 | + self.gamma = 0.99 |
| 21 | + self.buffer = BufferTupleOnline(max_buffer) |
| 22 | + |
| 23 | + self.learning_rate = net.learning_rate |
| 24 | + self.device = net.device |
| 25 | + self.act = net.act.to(self.device) |
| 26 | + self.cri = net.cri.to(self.device) |
| 27 | + self.act.train() |
| 28 | + self.cri.train() |
| 29 | + self.act_optimizer = net.act_optimizer |
| 30 | + self.cri_optimizer = net.cri_optimizer |
| 31 | + |
| 32 | + self.criterion = nn.SmoothL1Loss() # 一种损失函数 |
| 33 | + |
| 34 | + def select_action(self, states): # CPU array to GPU tensor to CPU array |
| 35 | + states = torch.tensor(states, dtype=torch.float32, device=self.device) |
| 36 | + |
| 37 | + a_noise, log_prob = self.act.get__a__log_prob(states) |
| 38 | + a_noise = a_noise.cpu().data.numpy()[0] |
| 39 | + log_prob = log_prob.cpu().data.numpy()[0] |
| 40 | + return a_noise, log_prob # not tanh() |
| 41 | + |
| 42 | + def update_buffer(self, env, max_step, reward_scale): |
| 43 | + # collect tuple (reward, mask, state, action, log_prob, ) |
| 44 | + self.buffer.storage_list = list() # PPO is an online policy RL algorithm. |
| 45 | + # PPO (or GAE) should be an online policy. |
| 46 | + # Don't use Offline for PPO (or GAE). It won't speed up training but slower |
| 47 | + |
| 48 | + rewards = list() |
| 49 | + steps = list() |
| 50 | + |
| 51 | + step_counter = 0 |
| 52 | + while step_counter < self.buffer.max_memo: |
| 53 | + state = env.reset() |
| 54 | + |
| 55 | + reward_sum = 0 |
| 56 | + step_sum = 0 |
| 57 | + |
| 58 | + for step_sum in range(max_step): |
| 59 | + # env.render() |
| 60 | + action, log_prob = self.select_action((state,)) |
| 61 | + |
| 62 | + next_state, reward, done, _ = env.step(np.tanh(action)) |
| 63 | + reward_sum += reward |
| 64 | + |
| 65 | + mask = 0.0 if done else self.gamma |
| 66 | + |
| 67 | + reward_ = reward * reward_scale |
| 68 | + self.buffer.push(reward_, mask, state, action, log_prob, ) |
| 69 | + |
| 70 | + if done: |
| 71 | + break |
| 72 | + |
| 73 | + state = next_state |
| 74 | + |
| 75 | + rewards.append(reward_sum) |
| 76 | + steps.append(step_sum) |
| 77 | + |
| 78 | + step_counter += step_sum |
| 79 | + return np.array(rewards).mean(), steps |
| 80 | + |
| 81 | + def update_policy(self, batch_size, repeat_times): |
| 82 | + self.act.train() |
| 83 | + self.cri.train() |
| 84 | + clip = 0.25 # ratio.clamp(1 - clip, 1 + clip) |
| 85 | + lambda_adv = 0.98 # why 0.98? cannot use 0.99 |
| 86 | + lambda_entropy = 0.01 # could be 0.02 |
| 87 | + # repeat_times = 8 could be 2**3 ~ 2**5 |
| 88 | + |
| 89 | + actor_loss = critic_loss = None # just for print return |
| 90 | + |
| 91 | + '''the batch for training''' |
| 92 | + max_memo = len(self.buffer) |
| 93 | + all_batch = self.buffer.sample_all() |
| 94 | + all_reward, all_mask, all_state, all_action, all_log_prob = [ |
| 95 | + torch.tensor(ary, dtype=torch.float32, device=self.device) |
| 96 | + for ary in (all_batch.reward, all_batch.mask, all_batch.state, all_batch.action, all_batch.log_prob,) |
| 97 | + ] |
| 98 | + |
| 99 | + # all__new_v = self.cri(all_state).detach_() # all new value |
| 100 | + with torch.no_grad(): |
| 101 | + b_size = 512 |
| 102 | + all__new_v = torch.cat( |
| 103 | + [self.cri(all_state[i:i + b_size]) |
| 104 | + for i in range(0, all_state.size()[0], b_size)], dim=0) # 这句相当于把[tensor1, tensor2...] cat 成了一个长tensor |
| 105 | + |
| 106 | + '''compute old_v (old policy value), adv_v (advantage value) |
| 107 | + refer: GAE. ICLR 2016. Generalization Advantage Estimate. |
| 108 | + https://arxiv.org/pdf/1506.02438.pdf''' |
| 109 | + all__delta = torch.empty(max_memo, dtype=torch.float32, device=self.device) |
| 110 | + all__old_v = torch.empty(max_memo, dtype=torch.float32, device=self.device) # old policy value |
| 111 | + all__adv_v = torch.empty(max_memo, dtype=torch.float32, device=self.device) # advantage value |
| 112 | + |
| 113 | + prev_old_v = 0 # old q value |
| 114 | + prev_new_v = 0 # new q value |
| 115 | + prev_adv_v = 0 # advantage q value |
| 116 | + for i in range(max_memo - 1, -1, -1): |
| 117 | + all__delta[i] = all_reward[i] + all_mask[i] * prev_new_v - all__new_v[i] |
| 118 | + all__old_v[i] = all_reward[i] + all_mask[i] * prev_old_v |
| 119 | + all__adv_v[i] = all__delta[i] + all_mask[i] * prev_adv_v * lambda_adv |
| 120 | + |
| 121 | + prev_old_v = all__old_v[i] |
| 122 | + prev_new_v = all__new_v[i] |
| 123 | + prev_adv_v = all__adv_v[i] |
| 124 | + |
| 125 | + all__adv_v = (all__adv_v - all__adv_v.mean()) / (all__adv_v.std() + 1e-5) # advantage_norm: |
| 126 | + |
| 127 | + '''mini batch sample''' |
| 128 | + sample_times = int(repeat_times * max_memo / batch_size) |
| 129 | + for _ in range(sample_times): |
| 130 | + '''random sample''' |
| 131 | + # indices = rd.choice(max_memo, batch_size, replace=True) # False) |
| 132 | + indices = rd.randint(max_memo, size=batch_size) |
| 133 | + |
| 134 | + state = all_state[indices] |
| 135 | + action = all_action[indices] |
| 136 | + advantage = all__adv_v[indices] |
| 137 | + old_value = all__old_v[indices].unsqueeze(1) |
| 138 | + old_log_prob = all_log_prob[indices] |
| 139 | + |
| 140 | + """Adaptive KL Penalty Coefficient |
| 141 | + loss_KLPEN = surrogate_obj + value_obj * lambda_value + entropy_obj * lambda_entropy |
| 142 | + loss_KLPEN = (value_obj * lambda_value) + (surrogate_obj + entropy_obj * lambda_entropy) |
| 143 | + loss_KLPEN = (critic_loss) + (actor_loss) |
| 144 | + """ |
| 145 | + |
| 146 | + '''critic_loss''' |
| 147 | + new_log_prob = self.act.compute__log_prob(state, action) # it is actor_loss |
| 148 | + new_value = self.cri(state) |
| 149 | + |
| 150 | + critic_loss = (self.criterion(new_value, old_value)) / (old_value.std() + 1e-5) |
| 151 | + self.cri_optimizer.zero_grad() |
| 152 | + critic_loss.backward() |
| 153 | + self.cri_optimizer.step() |
| 154 | + |
| 155 | + '''actor_loss''' |
| 156 | + # surrogate objective of TRPO |
| 157 | + ratio = torch.exp(new_log_prob - old_log_prob) |
| 158 | + surrogate_obj0 = advantage * ratio |
| 159 | + surrogate_obj1 = advantage * ratio.clamp(1 - clip, 1 + clip) |
| 160 | + surrogate_obj = -torch.min(surrogate_obj0, surrogate_obj1).mean() |
| 161 | + loss_entropy = (torch.exp(new_log_prob) * new_log_prob).mean() # policy entropy |
| 162 | + |
| 163 | + actor_loss = surrogate_obj + loss_entropy * lambda_entropy |
| 164 | + self.act_optimizer.zero_grad() |
| 165 | + actor_loss.backward() |
| 166 | + self.act_optimizer.step() |
| 167 | + |
| 168 | + self.act.eval() |
| 169 | + self.cri.eval() |
| 170 | + return actor_loss.item(), critic_loss.item() |
| 171 | + |
| 172 | + def update_policy_mp(self, batch_size, repeat_times,buffer_total): |
| 173 | + self.act.train() |
| 174 | + self.cri.train() |
| 175 | + clip = 0.25 # ratio.clamp(1 - clip, 1 + clip) |
| 176 | + lambda_adv = 0.98 # why 0.98? cannot use 0.99 |
| 177 | + lambda_entropy = 0.01 # could be 0.02 |
| 178 | + # repeat_times = 8 could be 2**3 ~ 2**5 |
| 179 | + |
| 180 | + actor_loss = critic_loss = None # just for print return |
| 181 | + |
| 182 | + '''the batch for training''' |
| 183 | + [r, m, s, a, log] = [tuple() for _ in range(5)] |
| 184 | + max_memo = 0 |
| 185 | + for buffer in buffer_total: |
| 186 | + max_memo += len(buffer[0]) |
| 187 | + r += buffer[0] |
| 188 | + m += buffer[1] |
| 189 | + s += buffer[2] |
| 190 | + a += buffer[3] |
| 191 | + log += buffer[4] |
| 192 | + tran = namedtuple('Transition',('reward','mask','state','action','log_prob')) |
| 193 | + all_batch = tran(r,m,s,a,log) |
| 194 | + |
| 195 | + all_reward, all_mask, all_state, all_action, all_log_prob = [ |
| 196 | + torch.tensor(ary, dtype=torch.float32, device=self.device) |
| 197 | + for ary in (all_batch.reward, all_batch.mask, all_batch.state, all_batch.action, all_batch.log_prob,) |
| 198 | + ] |
| 199 | + |
| 200 | + # all__new_v = self.cri(all_state).detach_() # all new value |
| 201 | + with torch.no_grad(): |
| 202 | + b_size = 512 |
| 203 | + all__new_v = torch.cat( |
| 204 | + [self.cri(all_state[i:i + b_size]) |
| 205 | + for i in range(0, all_state.size()[0], b_size)], dim=0) # 这句相当于把[tensor1, tensor2...] cat 成了一个长tensor |
| 206 | + |
| 207 | + '''compute old_v (old policy value), adv_v (advantage value) |
| 208 | + refer: GAE. ICLR 2016. Generalization Advantage Estimate. |
| 209 | + https://arxiv.org/pdf/1506.02438.pdf''' |
| 210 | + all__delta = torch.empty(max_memo, dtype=torch.float32, device=self.device) |
| 211 | + all__old_v = torch.empty(max_memo, dtype=torch.float32, device=self.device) # old policy value |
| 212 | + all__adv_v = torch.empty(max_memo, dtype=torch.float32, device=self.device) # advantage value |
| 213 | + |
| 214 | + prev_old_v = 0 # old q value |
| 215 | + prev_new_v = 0 # new q value |
| 216 | + prev_adv_v = 0 # advantage q value |
| 217 | + for i in range(max_memo - 1, -1, -1): |
| 218 | + all__delta[i] = all_reward[i] + all_mask[i] * prev_new_v - all__new_v[i] |
| 219 | + all__old_v[i] = all_reward[i] + all_mask[i] * prev_old_v |
| 220 | + all__adv_v[i] = all__delta[i] + all_mask[i] * prev_adv_v * lambda_adv |
| 221 | + |
| 222 | + prev_old_v = all__old_v[i] |
| 223 | + prev_new_v = all__new_v[i] |
| 224 | + prev_adv_v = all__adv_v[i] |
| 225 | + |
| 226 | + all__adv_v = (all__adv_v - all__adv_v.mean()) / (all__adv_v.std() + 1e-5) # advantage_norm: |
| 227 | + |
| 228 | + '''mini batch sample''' |
| 229 | + sample_times = int(repeat_times * max_memo / batch_size) |
| 230 | + for _ in range(sample_times): |
| 231 | + '''random sample''' |
| 232 | + # indices = rd.choice(max_memo, batch_size, replace=True) # False) |
| 233 | + indices = rd.randint(max_memo, size=batch_size) |
| 234 | + |
| 235 | + state = all_state[indices] |
| 236 | + action = all_action[indices] |
| 237 | + advantage = all__adv_v[indices] |
| 238 | + old_value = all__old_v[indices].unsqueeze(1) |
| 239 | + old_log_prob = all_log_prob[indices] |
| 240 | + |
| 241 | + """Adaptive KL Penalty Coefficient |
| 242 | + loss_KLPEN = surrogate_obj + value_obj * lambda_value + entropy_obj * lambda_entropy |
| 243 | + loss_KLPEN = (value_obj * lambda_value) + (surrogate_obj + entropy_obj * lambda_entropy) |
| 244 | + loss_KLPEN = (critic_loss) + (actor_loss) |
| 245 | + """ |
| 246 | + |
| 247 | + '''critic_loss''' |
| 248 | + new_log_prob = self.act.compute__log_prob(state, action) # it is actor_loss |
| 249 | + new_value = self.cri(state) |
| 250 | + |
| 251 | + critic_loss = (self.criterion(new_value, old_value)) / (old_value.std() + 1e-5) |
| 252 | + self.cri_optimizer.zero_grad() |
| 253 | + critic_loss.backward() |
| 254 | + self.cri_optimizer.step() |
| 255 | + |
| 256 | + '''actor_loss''' |
| 257 | + # surrogate objective of TRPO |
| 258 | + ratio = torch.exp(new_log_prob - old_log_prob) |
| 259 | + surrogate_obj0 = advantage * ratio |
| 260 | + surrogate_obj1 = advantage * ratio.clamp(1 - clip, 1 + clip) |
| 261 | + surrogate_obj = -torch.min(surrogate_obj0, surrogate_obj1).mean() |
| 262 | + loss_entropy = (torch.exp(new_log_prob) * new_log_prob).mean() # policy entropy |
| 263 | + |
| 264 | + actor_loss = surrogate_obj + loss_entropy * lambda_entropy |
| 265 | + self.act_optimizer.zero_grad() |
| 266 | + actor_loss.backward() |
| 267 | + self.act_optimizer.step() |
| 268 | + |
| 269 | + self.act.eval() |
| 270 | + self.cri.eval() |
| 271 | + return actor_loss.item(), critic_loss.item() |
0 commit comments