-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo.py
52 lines (42 loc) · 1.28 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import random
import sys
import gym
import numpy as np
from gym import wrappers
from stable_baselines3 import PPO
import malware_rl
random.seed(0)
module_path = os.path.split(os.path.abspath(sys.modules[__name__].__file__))[0]
outdir = os.path.join(module_path, "data/logs/ppo-agent-results")
# Setting up environment
env = gym.make("sorel-train-v0")
env = wrappers.Monitor(env, directory=outdir, force=True)
env.seed(0)
# Setting up training parameters and holding variables
episode_count = 250
done = False
reward = 0
evasions = 0
evasion_history = {}
# Train the agent
agent = PPO("MlpPolicy", env, verbose=1)
agent.learn(total_timesteps=2500)
# Test the agent
for i in range(episode_count):
ob = env.reset()
sha256 = env.env.sha256
while True:
action, _states = agent.predict(ob, reward, done)
obs, rewards, done, ep_history = env.step(action)
if done and rewards >= 10.0:
evasions += 1
evasion_history[sha256] = ep_history
break
elif done:
break
# Output metrics/evaluation stuff
evasion_rate = (evasions / episode_count) * 100
mean_action_count = np.mean(env.get_episode_lengths())
print(f"{evasion_rate}% samples evaded model.")
print(f"Average of {mean_action_count} moves to evade model.")