-
Notifications
You must be signed in to change notification settings - Fork 3
/
euklidian.py
57 lines (40 loc) · 1.02 KB
/
euklidian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def gcd(a: int, b: int) -> int:
while True:
if b == 0:
return a
a = a % b
if a == 0:
return b
b = b % a
def extended_gcd(a: int, b: int) -> (int, int, int):
if a == 0: # Optional check
return b, 0, 1
if b == 0: # Without this check the first iteration will divide by zero
return a, 1, 0
un_prev = 1
vn_prev = 0
un_cur = 0
vn_cur = 1
while True:
qn = a // b
new_r = a % b
a = b
b = new_r
if b == 0:
return a, un_cur, vn_cur
# Update coefficients
un_new = un_prev - qn * un_cur
vn_new = vn_prev - qn * vn_cur
# Shift coefficients
un_prev = un_cur
vn_prev = vn_cur
un_cur = un_new
vn_cur = vn_new
def inverse_modulo(a: int, n: int) -> int:
_, b, _ = extended_gcd(a, n)
return b % n
def next_coprime(d: int, n: int) -> int:
d = d + 1
while d < n and gcd(d, n) != 1:
d = d + 1
return d