-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdstgib_mnist.py
691 lines (617 loc) · 30.6 KB
/
dstgib_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#!/user/zhao/miniconda3/envs/torch-0
# -*- coding: utf_8 -*-
# @Time : 2024/7/10 17:56
# @Author: ZhaoKe
# @File : dstgib_mnist.py
# @Software: PyCharm
# reference: https://github.com/PanZiqiAI/disentangled-information-bottleneck
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
from torchvision.utils import save_image
from dstgib_libs.logger import Logger
from dstgib_libs.dataloader_mnist import DataCycle, ImageMNIST
from dstgib_libs.model_build import IterativeBaseModel, fet_d, ValidContainer
from dstgib_libs.custom_operations import BaseCriterion, TensorWrapper, set_requires_grad
from dstgib_libs.basic_metrics import FreqCounter, TriggerLambda, TriggerPeriod
# ----------------------------------------------------------------------------------------------------------------------
# Criterion
# ----------------------------------------------------------------------------------------------------------------------
class CrossEntropyLoss(BaseCriterion):
"""
Classification loss.
"""
def __init__(self, lmd=None):
super(CrossEntropyLoss, self).__init__(lmd)
# Config
self._loss = nn.CrossEntropyLoss()
def _call_method(self, output, label):
return self._loss(output, label)
class RecLoss(BaseCriterion):
"""
Reconstruction Loss.
"""
def _call_method(self, ipt, target):
loss_rec = torch.sum((ipt - target).pow(2)) / ipt.data.nelement()
# Return
return loss_rec
class EstLoss(BaseCriterion):
"""
Estimator objective.
"""
def __init__(self, radius, lmd=None):
super(EstLoss, self).__init__(lmd=lmd)
# Config
self._radius = radius
def _call_method(self, mode, **kwargs):
assert mode in ['main', 'est']
# 1. Calculate for main
if mode == 'main':
# (1) Density estimation
loss_est = -kwargs['output'].mean()
# (2) Making embedding located in [-radius, radius].
emb = torch.cat(kwargs['emb'], dim=0)
loss_wall = torch.relu(torch.abs(emb) - self._radius).square().mean()
# Return
return {'loss_est': loss_est, 'loss_wall': loss_wall}, -loss_est
# 2. Calculate for estimator
else:
# (1) Real & fake losses
loss_real = torch.mean((1.0 - kwargs['output_real']) ** 2)
loss_fake = torch.mean((1.0 + kwargs['output_fake']) ** 2)
# (2) Making outputs of the estimator to be zero-centric
outputs = torch.cat([kwargs['output_real'], kwargs['output_fake']], dim=0)
loss_zc = torch.mean(outputs).square()
# Return
return {'loss_real': loss_real, 'loss_fake': loss_fake, 'loss_zc': loss_zc}, \
(kwargs['output_real'].mean(), kwargs['output_fake'].mean())
def __call__(self, mode, **kwargs):
ret = super(EstLoss, self).__call__(mode, **kwargs)
# 1. For main
if mode == 'main':
losses, est = ret if isinstance(ret, tuple) else (ret, TensorWrapper(None))
losses.update({'est': est})
# Return
return losses
# 2. For estimator
else:
losses, (est_real, est_fake) = ret if isinstance(ret, tuple) else (
ret, TensorWrapper(None), TensorWrapper(None))
losses.update({'est_real': est_real, 'est_fake': est_fake})
# Return
return losses
# ----------------------------------------------------------------------------------------------------------------------
# Discriminator
# ----------------------------------------------------------------------------------------------------------------------
class GANLoss(BaseCriterion):
"""
GAN objectives.
"""
def __init__(self, lmd=None):
"""
Adversarial loss.
"""
super(GANLoss, self).__init__(lmd)
# Set loss
self.__loss = nn.CrossEntropyLoss()
def _call_method(self, pred, target_is_real):
target_tensor = torch.tensor(1 if target_is_real else 0, dtype=torch.long).to(pred.device)
loss = self.__loss(pred, target_tensor.expand(pred.size(0), ))
# Return
return loss, torch.max(pred, dim=1)[1]
def __call__(self, prediction, target_is_real, **kwargs):
# Get result
ret = super(GANLoss, self).__call__(prediction, target_is_real, **kwargs)
loss, pred = ret if isinstance(ret, tuple) else (ret, TensorWrapper(None))
# Return
return {'loss': loss, 'pred': pred}
def init_weights(layer):
"""
Initialize weights.
"""
if isinstance(layer, nn.Conv2d):
layer.weight.data.normal_(0.0, 0.05)
layer.bias.data.zero_()
elif isinstance(layer, nn.BatchNorm2d):
layer.weight.data.normal_(1.0, 0.02)
layer.bias.data.zero_()
elif isinstance(layer, nn.Linear):
layer.weight.data.normal_(0.0, 0.05)
if layer.bias is not None: layer.bias.data.zero_()
class Decoder(nn.Module):
"""
Decoder module.
"""
def __init__(self, class_dim, num_classes):
super(Decoder, self).__init__()
# 1. Architecture
self._fc = nn.Linear(in_features=class_dim, out_features=num_classes, bias=False)
# 2. Init weights
self.apply(init_weights)
def forward(self, emb):
return self._fc(emb)
class DensityEstimator(nn.Module):
"""
Estimating probability density.
"""
def __init__(self, style_dim, class_dim):
super(DensityEstimator, self).__init__()
# 1. Architecture
# (1) Pre-fc
self._fc_style = nn.Linear(in_features=style_dim, out_features=128, bias=True)
self._fc_class = nn.Linear(in_features=class_dim, out_features=128, bias=True)
# (2) FC blocks
self._fc_blocks = nn.Sequential(
# Layer 1
nn.Linear(in_features=256, out_features=256, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
# Layer 2
nn.Linear(in_features=256, out_features=256, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
# Layer 3
nn.Linear(in_features=256, out_features=1, bias=True))
# 2. Init weights
self.apply(init_weights)
def _call_method(self, style_emb, class_emb):
style_emb = self._fc_style(style_emb)
class_emb = self._fc_class(class_emb)
return self._fc_blocks(torch.cat([style_emb, class_emb], dim=1))
def forward(self, style_emb, class_emb, mode):
assert mode in ['orig', 'perm']
# 1. q(s, t)
if mode == 'orig':
return self._call_method(style_emb, class_emb)
# 2. q(s)q(t)
else:
# Permutation
style_emb_permed = style_emb[torch.randperm(style_emb.size(0)).to(style_emb.device)]
class_emb_permed = class_emb[torch.randperm(class_emb.size(0)).to(class_emb.device)]
return self._call_method(style_emb_permed, class_emb_permed)
# ----------------------------------------------------------------------------------------------------------------------
# MNIST
# ----------------------------------------------------------------------------------------------------------------------
class EncoderMNIST(nn.Module):
"""
Encoder Module.
"""
def __init__(self, nz):
super(EncoderMNIST, self).__init__()
# 1. Architecture
# (1) Convolution
self._conv_blocks = nn.Sequential(
# Layer 1
nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=2, padding=1, bias=True),
nn.InstanceNorm2d(num_features=16, track_running_stats=True),
nn.ReLU(inplace=True),
# Layer 2
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=2, padding=1, bias=True),
nn.InstanceNorm2d(num_features=32, track_running_stats=True),
nn.ReLU(inplace=True),
# Layer 3
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=2, padding=1, bias=True),
nn.InstanceNorm2d(num_features=64, track_running_stats=True),
nn.ReLU(inplace=True))
# (2) FC
self._fc = nn.Linear(in_features=256, out_features=nz, bias=True)
# 2. Init weights
self.apply(init_weights)
def forward(self, x):
x = self._conv_blocks(x)
x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
ret = self._fc(x)
# Return
return ret
class ReconstructorMNIST(nn.Module):
"""
Decoder Module.
"""
def __init__(self, style_dim, class_dim, num_classes):
super(ReconstructorMNIST, self).__init__()
# 1. Architecture
self.register_parameter('word_dict', torch.nn.Parameter(torch.randn(size=(num_classes, class_dim))))
# (1) FC
self._fc_style = nn.Linear(in_features=style_dim, out_features=256, bias=True)
self._fc_class = nn.Linear(in_features=class_dim, out_features=256, bias=True)
# (2) Convolution
self._deconv_blocks = nn.Sequential(
# Layer 1
nn.ConvTranspose2d(in_channels=128, out_channels=32, kernel_size=4, stride=2, padding=0, bias=True),
nn.InstanceNorm2d(num_features=32, track_running_stats=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
# Layer 2
nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=4, stride=2, padding=0, bias=True),
nn.InstanceNorm2d(num_features=16, track_running_stats=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
# Layer 3
nn.ConvTranspose2d(in_channels=16, out_channels=1, kernel_size=4, stride=2, padding=1, bias=True),
nn.Sigmoid())
# 2. Init weights
self.apply(init_weights)
def forward(self, style_emb, class_label):
# Get class dim
class_emb = torch.index_select(self.word_dict, dim=0, index=class_label)
# 1. FC
style_emb = F.leaky_relu_(self._fc_style(style_emb), negative_slope=0.2)
class_emb = F.leaky_relu_(self._fc_class(class_emb), negative_slope=0.2)
# 2. Convolution
x = torch.cat((style_emb, class_emb), dim=1)
x = x.view(x.size(0), 128, 2, 2)
x = self._deconv_blocks(x)
# Return
return x
class DiscriminatorMNIST(nn.Module):
"""
Discriminator Module.
"""
def __init__(self):
super(DiscriminatorMNIST, self).__init__()
# 1. Architecture
# (1) Convolution
self._conv_blocks = nn.Sequential(
# Layer 1
nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=2, padding=1, bias=True),
nn.InstanceNorm2d(num_features=32, track_running_stats=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
# Layer 2
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=2, padding=1, bias=True),
nn.InstanceNorm2d(num_features=64, track_running_stats=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
# Layer 3
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, stride=2, padding=1, bias=True),
nn.InstanceNorm2d(num_features=128, track_running_stats=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True))
# (2) FC
self._fc = nn.Linear(in_features=512, out_features=2, bias=True)
# 2. Init weights
self.apply(init_weights)
def forward(self, x):
# 1. Convolution
x = self._conv_blocks(x)
# 2. FC
x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
x = self._fc(x)
# Return
return x
# ----------------------------------------------------------------------------------------------------------------------
# operations
# ----------------------------------------------------------------------------------------------------------------------
def resampling(mu, std, **kwargs):
"""
Resampling trick.
"""
# Multi sampling. (batch*n_samples, nz)
if 'n_samples' in kwargs.keys():
if kwargs['n_samples'] > 0:
eps = torch.randn(mu.size(0), kwargs['n_samples'], mu.size(1), device=mu.device)
ret = eps.mul(std.unsqueeze(1) if isinstance(std, torch.Tensor) else std).add(mu.unsqueeze(1))
return ret.reshape(-1, ret.size(2))
else:
return mu
# Single sampling. (batch, nz)
else:
eps = torch.randn(mu.size(), device=mu.device)
return eps.mul(std).add(mu)
class LossWrapper(TensorWrapper):
"""
Loss wrapper.
"""
def __init__(self, _lmd, loss_tensor):
super(LossWrapper, self).__init__(loss_tensor)
# Lambda
self._lmd = _lmd
def loss_backprop(self):
if self._lmd.hyper_param > 0.0 and self._tensor is not None:
return self._lmd(self._tensor) * self._lmd.hyper_param
else:
return None
def summarize_losses_and_backward(*args, **kwargs):
"""
Each arg should either be instance of
- None
- Tensor
- LossWrapper
- LossWrapperContainer
"""
# 1. Init
ret = 0.0
# 2. Summarize to result
for arg in args:
if arg is None:
continue
elif isinstance(arg, LossWrapper):
loss_backprop = arg.loss_backprop()
if loss_backprop is not None: ret += loss_backprop
elif isinstance(arg, torch.Tensor):
ret += arg
else:
raise NotImplementedError
# 3. Backward
if isinstance(ret, torch.Tensor):
ret.backward(**kwargs)
# ----------------------------------------------------------------------------------------------------------------------
# Visualizing disentangling
# ----------------------------------------------------------------------------------------------------------------------
@torch.no_grad()
def vis_grid_disentangling(batch_data, func_style, func_rec, gap_size, save_path):
"""
Visualizing disentangling in grid.
"""
images, class_label = batch_data
# 1. Calculate reconstructions
# (1) Encoded & get shape. (batch, style_dim)
style_mu = func_style(images)
batch, style_dim = style_mu.size()
# (2) Mesh grid. (batch*batch, style_dim) & (batch*batch, class_dim)
style_mu = style_mu.unsqueeze(1).expand(batch, batch, style_dim).reshape(-1, style_dim)
class_label = class_label.unsqueeze(0).expand(batch, batch).reshape(-1, )
# (3) Decode. (batch*batch, ...)
recon = func_rec(style_mu, class_label)
# 2. Get result
recon = torch.reshape(recon, shape=(batch, batch, *recon.size()[1:]))
recon = torch.cat([_.squeeze(1) for _ in torch.split(recon, split_size_or_sections=1, dim=1)], dim=3)
recon = torch.cat([_.squeeze(0) for _ in torch.split(recon, split_size_or_sections=1, dim=0)], dim=1)
# 1> Right
hor_images = torch.cat([_.squeeze(0) for _ in torch.split(images, split_size_or_sections=1, dim=0)], dim=2)
hor_gap = torch.ones(size=(hor_images.size(0), gap_size, hor_images.size(2)), device=hor_images.device)
ret = torch.cat([hor_images, hor_gap, recon], dim=1)
# 2> Left
ver_images = torch.cat([_.squeeze(0) for _ in torch.split(images, split_size_or_sections=1, dim=0)], dim=1)
ver_images = torch.cat([
torch.zeros(size=(ver_images.size(0), images.size(2), images.size(3)), device=ver_images.device),
torch.ones(size=(ver_images.size(0), gap_size, images.size(3)), device=ver_images.device),
ver_images], dim=1)
ver_gap = torch.ones(size=(ver_images.size(0), ver_images.size(1), gap_size), device=ver_images.device)
ver_images = torch.cat([ver_images, ver_gap], dim=2)
# Result
ret = torch.cat([ver_images, ret], dim=2)
# 3. Save
save_image(ret.unsqueeze(0), save_path)
class DisenIB(IterativeBaseModel):
"""
Disentangled IB model.
"""
def _build_architectures(self, **modules):
super(DisenIB, self)._build_architectures(
# Encoder, decoder, reconstructor, estimator
Enc_style=EncoderMNIST(self._cfg.args.style_dim), Enc_class=EncoderMNIST(self._cfg.args.class_dim),
Dec=Decoder(self._cfg.args.class_dim, self._cfg.args.num_classes),
Rec=ReconstructorMNIST(self._cfg.args.style_dim, self._cfg.args.class_dim, self._cfg.args.num_classes),
Est=DensityEstimator(self._cfg.args.style_dim, self._cfg.args.class_dim),
# Discriminator for improving generated quality
Disc=DiscriminatorMNIST())
def _set_criterions(self):
self._criterions['dec'] = CrossEntropyLoss(lmd=self._cfg.args.lambda_dec)
self._criterions['rec'] = RecLoss(lmd=self._cfg.args.lambda_rec)
self._criterions['est'] = EstLoss(radius=self._cfg.args.emb_radius)
# Discriminator
self._criterions['disc'] = GANLoss()
def _set_optimizers(self):
self._optimizers['main'] = torch.optim.Adam(
list(self._Enc_style.parameters()) + list(self._Enc_class.parameters()) +
list(self._Dec.parameters()) + list(self._Rec.parameters()),
lr=self._cfg.args.learning_rate, betas=(0.5, 0.999))
self._optimizers['est'] = torch.optim.Adam(
self._Est.parameters(), lr=self._cfg.args.learning_rate, betas=(0.5, 0.999))
# Discriminator
self._optimizers['disc'] = torch.optim.Adam(
self._Disc.parameters(), lr=self._cfg.args.learning_rate, betas=(0.5, 0.999))
def _set_meters(self, **kwargs):
super(DisenIB, self)._set_meters()
self._meters['counter_eval'] = FreqCounter(self._cfg.args.freq_step_eval)
self._meters['trigger_est'] = TriggerLambda(lambda n: n >= self._cfg.args.est_thr)
self._meters['trigger_est_style_optimize'] = TriggerPeriod(
period=self._cfg.args.est_style_optimize + 1, area=self._cfg.args.est_style_optimize)
self._meters['trigger_disc'] = TriggerLambda(lambda n: n >= self._cfg.args.disc_thr)
# ------------------------------------------------------------------------------------------------------------------
# Training
# ------------------------------------------------------------------------------------------------------------------
def _deploy_batch_data(self, batch_data):
image, label = map(lambda x: x.to(self._cfg.args.device), batch_data)
return image.size(0), (image, label)
def _train_step(self, packs):
################################################################################################################
# Main
################################################################################################################
for _ in range(self._cfg.args.n_times_main):
images, label = self._fetch_batch_data()
# Clear grad
set_requires_grad([self._Enc_style, self._Enc_class, self._Dec, self._Rec], requires_grad=True)
set_requires_grad([self._Disc, self._Est], requires_grad=False)
self._optimizers['main'].zero_grad()
# ----------------------------------------------------------------------------------------------------------
# Decoding & reconstruction
# ----------------------------------------------------------------------------------------------------------
# 1. Decoding
style_emb, class_emb = self._Enc_style(images), self._Enc_class(images)
dec_output = self._Dec(resampling(class_emb, self._cfg.args.class_std))
loss_dec = self._criterions['dec'](dec_output, label)
# 2. Reconstruction
rec_output = self._Rec(resampling(style_emb, self._cfg.args.style_std), label)
loss_rec = self._criterions['rec'](rec_output, images)
# Backward
summarize_losses_and_backward(loss_dec, loss_rec, retain_graph=True)
# ----------------------------------------------------------------------------------------------------------
# Estimator
# ----------------------------------------------------------------------------------------------------------
# Calculate output (batch*n_samples, ) & loss (1, ).
est_output = self._Est(
resampling(style_emb, self._cfg.args.est_style_std),
resampling(class_emb, self._cfg.args.est_class_std), mode='orig')
crit_est = self._criterions['est'](
output=est_output, emb=(style_emb, class_emb), mode='main',
lmd={'loss_est': self._cfg.args.lambda_est, 'loss_wall': self._cfg.args.lambda_wall})
# Backward
# 1> Density estimation
if self._meters['trigger_est'].check(self._meters['i']['step']):
if self._meters['trigger_est_style_optimize'].check():
set_requires_grad(self._Enc_class, requires_grad=False)
summarize_losses_and_backward(crit_est['loss_est'], retain_graph=True)
set_requires_grad(self._Enc_class, requires_grad=True)
else:
set_requires_grad(self._Enc_style, requires_grad=False)
summarize_losses_and_backward(crit_est['loss_est'], retain_graph=True)
set_requires_grad(self._Enc_style, requires_grad=True)
# 2> Embedding wall
summarize_losses_and_backward(crit_est['loss_wall'], retain_graph=True)
# ----------------------------------------------------------------------------------------------------------
# Discriminator
# ----------------------------------------------------------------------------------------------------------
# Calculate loss
disc_output = self._Disc(rec_output)
crit_gen = self._criterions['disc'](disc_output, True, lmd=self._cfg.args.lambda_disc)
# Backward
if self._meters['trigger_disc'].check(self._meters['i']['step']):
summarize_losses_and_backward(crit_gen['loss'], retain_graph=True)
# ----------------------------------------------------------------------------------------------------------
# Update
self._optimizers['main'].step()
""" Saving """
packs['log'].update({
# Decoding & reconstruction
'loss_dec': loss_dec.item(), 'loss_rec': loss_rec.item(),
# Estimator
'loss_est_NO_DISPLAY': crit_est['loss_est'].item(), 'est': crit_est['est'].item()
})
################################################################################################################
# Density Estimator
################################################################################################################
for _ in range(self._cfg.args.n_times_est):
with self._meters['timers']('io'):
images, label = map(lambda _x: _x.to(self._cfg.args.device), next(self._data['train_est']))
# Clear grad
set_requires_grad([self._Enc_style, self._Enc_class, self._Dec, self._Rec], requires_grad=False)
set_requires_grad([self._Est], requires_grad=True)
self._optimizers['est'].zero_grad()
# 1. Get embedding
style_emb, class_emb = self._Enc_style(images).detach(), self._Enc_class(images).detach()
# 2. Get output (batch*n_samples, ) & loss (1, ).
est_output_real = self._Est(
resampling(style_emb, self._cfg.args.est_style_std),
resampling(class_emb, self._cfg.args.est_class_std), mode='perm')
est_output_fake = self._Est(
resampling(style_emb, self._cfg.args.est_style_std),
resampling(class_emb, self._cfg.args.est_class_std), mode='orig')
crit_est = self._criterions['est'](
output_fake=est_output_fake, output_real=est_output_real, mode='est',
lmd={'loss_real': 1.0, 'loss_fake': 1.0, 'loss_zc': self._cfg.args.lambda_est_zc})
# Backward
summarize_losses_and_backward(crit_est['loss_real'], crit_est['loss_fake'], crit_est['loss_zc'])
# Update
self._optimizers['est'].step()
""" Saving """
packs['log'].update({
# Anchor
'loss_est_real_NO_DISPLAY': crit_est['loss_real'].item(), 'est_real': crit_est['est_real'].item(),
'loss_est_fake_NO_DISPLAY': crit_est['loss_fake'].item(), 'est_fake': crit_est['est_fake'].item()})
################################################################################################################
# Discriminator
################################################################################################################
for _ in range(self._cfg.args.n_times_disc):
images, label = self._fetch_batch_data()
# Clear grad
set_requires_grad([self._Enc_style, self._Enc_class, self._Dec, self._Rec], requires_grad=False)
set_requires_grad([self._Disc], requires_grad=True)
self._optimizers['disc'].zero_grad()
# 1. Get disc_output
disc_output_real = self._Disc(images)
style_emb = resampling(self._Enc_style(images), self._cfg.args.style_std)
disc_output_fake = self._Disc(self._Rec(style_emb, label).detach())
# 2. Calculate loss
crit_disc_real = self._criterions['disc'](disc_output_real, True, lmd=1.0)
crit_disc_fake = self._criterions['disc'](disc_output_fake, False, lmd=1.0)
# Backward & save
disc_acc = torch.cat([crit_disc_real['pred'] == 1, crit_disc_fake['pred'] == 0], dim=0).sum().item() / (
images.size(0) * 2)
if disc_acc < self._cfg.args.disc_limit_acc:
summarize_losses_and_backward(crit_disc_real['loss'], crit_disc_fake['loss'])
self._optimizers['disc'].step()
packs['log'].update({
'loss_disc_real': crit_disc_real['loss'].item(), 'loss_disc_fake': crit_disc_fake['loss'].item(),
'disc_acc': disc_acc})
def _process_after_step(self, packs, **kwargs):
# 1. Logging
self._process_log_after_step(packs)
# 2. Evaluation
if self._meters['counter_eval'].check(self._meters['i']['step']):
vis_grid_disentangling(
batch_data=map(lambda x: x[:self._cfg.args.eval_dis_n_samples], self._fetch_batch_data(no_record=True)),
func_style=self._Enc_style, func_rec=self._Rec, gap_size=3,
save_path=os.path.join(self._cfg.args.eval_dis_dir, 'step[%d].png' % self._meters['i']['step']))
# 3. Chkpt
self._process_chkpt_and_lr_after_step()
# Clear packs
packs['log'] = ValidContainer()
def _process_log_after_step(self, packs, **kwargs):
def _lmd_generate_log():
r_tfboard = {
'train/losses': fet_d(packs['log'], prefix='loss_', remove=('loss_', '_NO_DISPLAY')),
'train/est': fet_d(packs['log'], prefix='est_')
}
packs['log'] = packs['log'].dict
packs['tfboard'] = r_tfboard
super(DisenIB, self)._process_log_after_step(
packs, lmd_generate_log=_lmd_generate_log, lmd_process_log=Logger.reform_no_display_items)
def get_args():
parser = argparse.ArgumentParser(allow_abbrev=False)
################################################################################################################
# Datasets
################################################################################################################
parser.add_argument("--dataset_shuffle", type=int, default=1, choices=[0, 1])
parser.add_argument("--dataset_num_threads", type=int, default=0)
parser.add_argument("--dataset_drop_last", type=bool, default=True)
################################################################################################################
# Others
################################################################################################################
parser.add_argument("--style_dim", type=int, default=16)
parser.add_argument("--class_dim", type=int, default=16)
parser.add_argument("--style_std", type=float, default=0.1)
parser.add_argument("--class_std", type=float, default=1.0)
parser.add_argument("--emb_radius", type=float, default=3.0)
# Optimization & Lambda
parser.add_argument("--n_times_main", type=int, default=10)
parser.add_argument("--n_times_est", type=int, default=1)
parser.add_argument("--n_times_disc", type=int, default=1)
parser.add_argument("--disc_thr", type=int, default=1000)
parser.add_argument("--disc_limit_acc", type=float, default=0.8)
parser.add_argument("--est_thr", type=int, default=3000)
parser.add_argument("--est_batch_size", type=int, default=64)
parser.add_argument("--est_style_std", type=float, default=0.1)
parser.add_argument("--est_class_std", type=float, default=0.1)
parser.add_argument("--est_style_optimize", type=int, default=4)
parser.add_argument("--lambda_dec", type=float, default=1.0)
parser.add_argument("--lambda_rec", type=float, default=10.0)
parser.add_argument("--lambda_est", type=float, default=0.5)
parser.add_argument("--lambda_est_zc", type=float, default=0.05)
parser.add_argument("--lambda_wall", type=float, default=10.0)
parser.add_argument("--lambda_disc", type=float, default=0.1)
# Evaluating args
parser.add_argument("--freq_step_eval", type=int, default=500)
parser.add_argument("--eval_dis_n_samples", type=int, default=10)
# Epochs & batch size
parser.add_argument("--steps", type=int, default=20000)
parser.add_argument("--batch_size", type=int, default=64)
# Learning rate
parser.add_argument("--learning_rate", type=float, default=0.0001)
# Frequency
parser.add_argument("--freq_iter_log", type=int, default=4096)
parser.add_argument("--freq_step_chkpt", type=int, default=1000)
parser.add_argument("--dataset", type=str, default="mnist")
parser.add_argument("--num_classes", type=int, default=10)
args = parser.parse_args()
return args
if __name__ == '__main__':
# 1. Generate config
cfg = get_args()
# 2. Generate model & dataloader
dataloader = {
"train_data": DataCycle(DataLoader(dataset=ImageMNIST('train', cfg.dataset, transforms=ToTensor()))),
"train_est_data": DataCycle(DataLoader(dataset=ImageMNIST('train', cfg.dataset, transforms=ToTensor()),
batch_size=cfg.args.est_batch_size))
}
model = DisenIB(cfg=cfg)
# 3. Train
model.train_parameters(**dataloader)