-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsim_config.py
60 lines (47 loc) · 1.41 KB
/
sim_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from typing import NamedTuple
class RochConfig(NamedTuple):
HillCure: float = 2
HillPatho: float = 2
ec50_patho: float = 1
emax_patho: float = 1
k_dexa: float = 1
k_discure_immunereact: float = 1
k_discure_immunity: float = 1
k_disprog: float = 1
k_immune_disease: float = 1
k_immune_feedback: float = 1
k_immune_off: float = 1
k_immunity: float = 1
# kel: float = 1/(5/24)
kel: float = 1
class DataConfig(NamedTuple):
n_sample: int = 1000
obs_dim: int = 20
# latent_dim: int = 12
latent_dim: int = 6
action_dim: int = 1
t_max: int = 14
step_size: int = 1
sparsity: float = 0.5
output_sparsity: float = 0.5
output_sigma: float = 0.1 # 0.3
dose_max: float = 1
p_remove: float = 0.5
dim8_config = DataConfig(obs_dim=40, latent_dim=8, output_sparsity=1 - 0.375, output_sigma=0.2, dose_max=10)
dim12_config = DataConfig(obs_dim=80, latent_dim=12, output_sparsity=1 - 0.25, output_sigma=0.2, dose_max=10)
class ModelConfig(NamedTuple):
encoder_latent_ratio: float = 2.0
expert_only: bool = False
neural_ode: bool = False
path: str = "model/"
class OptimConfig(NamedTuple):
lr: float = 0.01
ode_method: str = "dopri5"
niters: int = 400
batch_size: int = 50
test_freq: int = 10
shuffle: bool = True
n_restart: int = 5
early_stop: int = 10
class EvalConfig(NamedTuple):
t0: int = 5