-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
48 lines (41 loc) · 1.99 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# -*- coding: utf-8 -*-
"""
@author: Zixiang Zhao ([email protected])
Pytorch implement for "DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion" (IJCAI 2020)
https://www.ijcai.org/Proceedings/2020/135
"""
import numpy as np
import torch
import os
from PIL import Image
from skimage.io import imsave
from utils_didfuse import Test_fusion
# =============================================================================
# Test Details
# =============================================================================
device='cuda'
addition_mode='Sum'#'Sum'&'Average'&'l1_norm'
Test_data_choose='Test_data_TNO'#'Test_data_TNO'&'Test_data_NIR_Country'&'Test_data_FLIR'
if Test_data_choose=='Test_data_TNO':
test_data_path = '.\\Datasets\\Test_data_TNO'
elif Test_data_choose=='Test_data_NIR_Country':
test_data_path = '.\\Datasets\\Test_data_NIR_Country'
elif Test_data_choose=='Test_data_FLIR':
test_data_path = '.\\Datasets\\Test_data_FLIR\\'
# Determine the number of files
Test_Image_Number=len(os.listdir(test_data_path))
# =============================================================================
# Test
# =============================================================================
for i in range(int(Test_Image_Number/2)):
if Test_data_choose=='Test_data_TNO':
Test_IR = Image.open(test_data_path+'\IR'+str(i+1)+'.bmp') # infrared image
Test_Vis = Image.open(test_data_path+'\VIS'+str(i+1)+'.bmp') # visible image
elif Test_data_choose=='Test_data_NIR_Country':
Test_IR = Image.open(test_data_path+'\IR'+str(i+1)+'.png') # infrared image
Test_Vis = Image.open(test_data_path+'\VIS'+str(i+1)+'.png') # visible image
elif Test_data_choose=='Test_data_FLIR':
Test_IR = Image.open(test_data_path+'\IR'+str(i+1)+'.jpg') # infrared image
Test_Vis = Image.open(test_data_path+'\VIS'+str(i+1)+'.jpg') # visible image
Fusion_image=Test_fusion(Test_IR,Test_Vis)
imsave('.\Test_result\F'+str(i+1)+'.png',Fusion_image)