-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathtest.py
235 lines (191 loc) · 9.36 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import re
import os
import yaml
import time
import torch
import logging
import argparse
import editdistance
from otrans.model import End2EndModel, LanguageModel
from otrans.recognize import build_recognizer
from otrans.data.loader import FeatureLoader
from otrans.train.utils import map_to_cuda
LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s"
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)
logger = logging.getLogger(__name__)
def main(args):
checkpoint = torch.load(args.load_model)
if args.config is not None:
with open(args.config, 'r') as f:
params = yaml.load(f, Loader=yaml.FullLoader)
else:
params = checkpoint['params']
params['data']['batch_size'] = args.batch_size
model_type = params['model']['type']
model = End2EndModel[model_type](params['model'])
if 'frontend' in checkpoint:
model.frontend.load_state_dict(checkpoint['frontend'])
logger.info('[FrontEnd] Load the frontend checkpoint!')
model.encoder.load_state_dict(checkpoint['encoder'])
logger.info('[Encoder] Load the encoder checkpoint!')
if 'decoder' in checkpoint:
model.decoder.load_state_dict(checkpoint['decoder'])
logger.info('[Decoder] Load the decoder checkpoint!')
if 'joint' in checkpoint:
model.joint.load_state_dict(checkpoint['joint'])
logger.info('[JointNet] Load the joint net of transducer checkpoint!')
if 'look_ahead_conv' in checkpoint:
model.lookahead_conv.load_state_dict(checkpoint['look_ahead_conv'])
logger.info('[LookAheadConvLayer] Load the external lookaheadconvlayer checkpoint!')
if 'ctc' in checkpoint:
model.assistor.load_state_dict(checkpoint['ctc'])
logger.info('[CTC Assistor] Load the ctc assistor checkpoint!')
logger.info('Finished! Loaded pre-trained model from %s' % args.load_model)
model.eval()
if args.ngpu > 0:
model.cuda()
if args.load_language_model is not None:
lm_chkpt = torch.load(args.load_language_model)
lm_parms = lm_chkpt['params']
lm_type = lm_parms['model']['type']
lm = LanguageModel[lm_type](lm_parms['model'])
lm.load_state_dict(lm_chkpt['model'])
logger.info('Load pre-trained language model from %s' % args.load_language_model)
lm.eval()
if args.ngpu > 0: lm.cuda()
else:
lm = None
lm_type = None
data_loader = FeatureLoader(params, args.decode_set, is_eval=True)
idx2unit = data_loader.dataset.idx2unit
recognizer = build_recognizer(model_type, model, lm, args, idx2unit)
totals = len(data_loader.dataset)
expdir = os.path.join('egs', params['data']['name'], 'exp', params['train']['save_name'])
decoder_folder_name = ['decode']
decoder_folder_name.append(args.decode_set)
decoder_folder_name.append(args.mode)
if args.mode != 'greedy':
decoder_folder_name.append('%d' % args.beam_width)
if args.load_language_model is not None:
decoder_folder_name.append('%s_%.2f' % (lm_type, args.lm_weight))
if args.ctc_weight > 0.0:
decoder_folder_name.append('ctc_weight_%.3f' % args.ctc_weight)
if args.ngram_lm is not None:
decoder_folder_name.append('ngram_alpha%.2f_beta%.2f' % (args.alpha, args.beta))
if args.apply_rescoring:
decoder_folder_name.append('rescore')
decoder_folder_name.append('rw_%.2f' % args.rescore_weight)
if args.apply_lm_rescoring:
decoder_folder_name.append('lm_rescore')
decoder_folder_name.append('rw_%.2f' % args.rescore_weight)
try:
ep = re.search(r'from(\d{1,3})to(\d{1,3})', args.load_model).groups()
decoder_folder_name.append('_'.join(list(ep)))
except:
ep = re.search(r'epoch.(\d{1,3}).pt', args.load_model).groups()[0]
decoder_folder_name.append('epoch_%s' % ep)
if args.debug:
decoder_folder_name.append('debug_%d_samples' % args.num_sample)
if args.suffix is not None:
decoder_folder_name.append(args.suffix)
decode_dir = os.path.join(expdir, '_'.join(decoder_folder_name))
if not os.path.exists(decode_dir):
os.makedirs(decode_dir)
writer = open(os.path.join(decode_dir, 'predict.txt'), 'w')
detail_writer = open(os.path.join(decode_dir, 'predict.log'), 'w')
top_n_false_tokens = 0
false_tokens = 0
total_tokens = 0
accu_time = 0
total_frames = 0
for step, (utt_id, inputs, targets) in enumerate(data_loader.loader):
if args.ngpu > 0:
inputs = map_to_cuda(inputs)
enc_inputs = inputs['inputs']
enc_mask = inputs['mask']
if args.batch_size == 1:
total_frames += enc_inputs.size(1)
st = time.time()
preds, scores = recognizer.recognize(enc_inputs, enc_mask)
et = time.time()
span = et - st
accu_time += span
truths = targets['targets']
truths_length = targets['targets_length']
for b in range(len(preds)):
n = step * args.batch_size + b
truth = [idx2unit[i.item()] for i in truths[b][1:truths_length[b]]]
if args.piece2word:
truth = ''.join(truth).replace('▁', ' ')
else:
truth = ' '.join(truth)
print_info = '[%d / %d ] %s - truth : %s' % (n, totals, utt_id[b], truth)
logger.info(print_info)
detail_writer.write(print_info+'\n')
total_tokens += len(truth.split())
nbest_min_false_tokens = 1e10
for i in range(len(preds[b])):
pred = preds[b][i]
if args.piece2word:
pred = ''.join(preds[b][i].split()).replace('▁', ' ')
_truth = truth.replace("<PESN> ", "").replace("<VIET> ", "").replace("<SWAH> ", "")
_pred = pred.replace("<PESN> ", "").replace("<VIET> ", "").replace("<SWAH> ", "")
n_diff = editdistance.eval(_truth.split(), _pred.split())
if i == 0:
false_tokens += n_diff
nbest_min_false_tokens = min(nbest_min_false_tokens, n_diff)
print_info = '[%d / %d ] %s - pred-%2d (%3.4f) : %s' % (n, totals, utt_id[b], i, float(scores.cpu()[b, i]), pred)
logger.info(print_info)
detail_writer.write(print_info+'\n')
writer.write(utt_id[b] + ' ' + preds[b][0] + '\n')
top_n_false_tokens += nbest_min_false_tokens
detail_writer.write('\n')
if args.debug and (step+1) * args.batch_size >= args.num_sample:
break
writer.close()
detail_writer.close()
with open(os.path.join(decode_dir, 'RESULT'), 'w') as w:
wer = false_tokens / total_tokens * 100
logger.info('The WER is %.3f.' % wer)
topn_wer = top_n_false_tokens / total_tokens * 100
logger.info('The top %d WER is %.3f' % (args.nbest, topn_wer))
w.write('The Model Chkpt: %s \n' % args.load_model)
if model_type == 'ctc':
w.write('Decode Mode: %s \n' % args.mode)
w.write('The WER is %.3f. \n' % wer)
if args.batch_size == 1:
rtf = accu_time / total_frames * 100
logger.info('The RTF is %.6f' % rtf)
w.write('The RTF is %.6f' % rtf)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default=None)
parser.add_argument('-n', '--ngpu', type=int, default=1)
parser.add_argument('-b', '--batch_size', type=int, default=1)
parser.add_argument('-nb', '--nbest', type=int, default=1)
parser.add_argument('-bw', '--beam_width', type=int, default=5)
parser.add_argument('-pn', '--penalty', type=float, default=0.6)
parser.add_argument('-ld', '--lamda', type=float, default=5)
parser.add_argument('-m', '--load_model', type=str, default=None)
parser.add_argument('-lm', '--load_language_model', type=str, default=None)
parser.add_argument('-ngram', '--ngram_lm', type=str, default=None)
parser.add_argument('-alpha', '--alpha', type=float, default=0.1)
parser.add_argument('-beta', '--beta', type=float, default=0.0)
parser.add_argument('-lmw', '--lm_weight', type=float, default=0.1)
parser.add_argument('-cw', '--ctc_weight', type=float, default=0.0)
parser.add_argument('-d', '--decode_set', type=str, default='test')
parser.add_argument('-ml', '--max_len', type=int, default=60)
parser.add_argument('-md', '--mode', type=str, default='beam')
# transducer related
parser.add_argument('-mt', '--max_tokens_per_chunk', type=int, default=5)
parser.add_argument('-pf', '--path_fusion', action='store_true', default=False)
parser.add_argument('-s', '--suffix', type=str, default=None)
parser.add_argument('-p2w', '--piece2word', action='store_true', default=False)
parser.add_argument('-resc', '--apply_rescoring', action='store_true', default=False)
parser.add_argument('-lm_resc', '--apply_lm_rescoring', action='store_true', default=False)
parser.add_argument('-rw', '--rescore_weight', type=float, default=1.0)
parser.add_argument('-debug', '--debug', action='store_true', default=False)
parser.add_argument('-sba', '--sort_by_avg_score', action='store_true', default=False)
parser.add_argument('-ns', '--num_sample', type=int, default=1)
cmd_args = parser.parse_args()
main(cmd_args)