-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkd_tree.py
54 lines (45 loc) · 1.75 KB
/
kd_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
class KDNode:
def __init__(self, node_value=None, left_child=None, right_child=None):
self.node_value = node_value
self.left_child = left_child
self.right_child = right_child
def __str__(self) -> str:
return str(self.node_value)
class KDTree:
def __init__(self):
self.root = KDNode()
def fit(self, X, y=None):
self.root = self._createTree(X, y)
return self
def _createTree(self, points: np.ndarray, labels=None, depth: int = 0):
if len(points) == 0:
return None
axis = depth % points.shape[-1]
index = np.argsort(points[:, axis])
points = points[index] # sorted point and find median
median = len(points) // 2
value = {}
value['data'] = points[median]
l_labels, r_labels = None, None
if labels is not None:
labels = labels[index]
value['label'] = labels[median]
l_labels = labels[:median]
r_labels = labels[median+1:]
return KDNode(
node_value=value,
left_child=self._createTree(points[:median], l_labels, depth+1),
right_child=self._createTree(points[median+1:], r_labels, depth+1)
)
def __repr__(self) -> str:
def get_tree_dict(node: KDNode):
if node is None:
return None
if node.left_child is None and node.right_child is None:
return node.node_value
node_dict = {str(node):{}}
node_dict[str(node)]['l'] = get_tree_dict(node.left_child)
node_dict[str(node)]['r'] = get_tree_dict(node.right_child)
return node_dict
return str(get_tree_dict(self.root))