forked from flashrom/flashrom
-
Notifications
You must be signed in to change notification settings - Fork 1
/
hwaccess_physmap.c
577 lines (487 loc) · 15.5 KB
/
hwaccess_physmap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009 Peter Stuge <[email protected]>
* Copyright (C) 2009 coresystems GmbH
* Copyright (C) 2010 Carl-Daniel Hailfinger
* Copyright (C) 2010 Rudolf Marek <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <unistd.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "flash.h"
#include "platform.h"
#include "hwaccess_physmap.h"
#if !defined(__DJGPP__) && !defined(__LIBPAYLOAD__)
/* No file access needed/possible to get mmap access permissions or access MSR. */
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#endif
#ifdef __DJGPP__
#include <dpmi.h>
#include <malloc.h>
#include <sys/nearptr.h>
#define ONE_MEGABYTE (1024 * 1024)
#define MEM_DEV "dpmi"
static void *realmem_map_aligned;
static void *map_first_meg(uintptr_t phys_addr, size_t len)
{
void *realmem_map;
size_t pagesize;
if (realmem_map_aligned)
return realmem_map_aligned + phys_addr;
/* valloc() from DJGPP 2.05 does not work properly */
pagesize = getpagesize();
realmem_map = malloc(ONE_MEGABYTE + pagesize);
if (!realmem_map)
return ERROR_PTR;
realmem_map_aligned = (void *)(((size_t) realmem_map +
(pagesize - 1)) & ~(pagesize - 1));
if (__djgpp_map_physical_memory(realmem_map_aligned, ONE_MEGABYTE, 0)) {
free(realmem_map);
realmem_map_aligned = NULL;
return ERROR_PTR;
}
return realmem_map_aligned + phys_addr;
}
static void *sys_physmap(uintptr_t phys_addr, size_t len)
{
int ret;
__dpmi_meminfo mi;
/* Enable 4GB limit on DS descriptor. */
if (!__djgpp_nearptr_enable())
return ERROR_PTR;
if ((phys_addr + len - 1) < ONE_MEGABYTE) {
/* We need to use another method to map first 1MB. */
return map_first_meg(phys_addr, len);
}
mi.address = phys_addr;
mi.size = len;
ret = __dpmi_physical_address_mapping(&mi);
if (ret != 0)
return ERROR_PTR;
return (void *) mi.address + __djgpp_conventional_base;
}
#define sys_physmap_rw_uncached sys_physmap
#define sys_physmap_ro_cached sys_physmap
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
{
__dpmi_meminfo mi;
/* There is no known way to unmap the first 1 MB. The DPMI server will
* do this for us on exit.
*/
if ((virt_addr >= realmem_map_aligned) &&
((virt_addr + len) <= (realmem_map_aligned + ONE_MEGABYTE))) {
return;
}
mi.address = (unsigned long) virt_addr;
__dpmi_free_physical_address_mapping(&mi);
}
#elif defined(__LIBPAYLOAD__)
#include <arch/virtual.h>
#define MEM_DEV ""
static void *sys_physmap(uintptr_t phys_addr, size_t len)
{
return (void *)phys_to_virt(phys_addr);
}
#define sys_physmap_rw_uncached sys_physmap
#define sys_physmap_ro_cached sys_physmap
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
{
}
#elif defined(__MACH__) && defined(__APPLE__)
#include <DirectHW/DirectHW.h>
#define MEM_DEV "DirectHW"
static void *sys_physmap(uintptr_t phys_addr, size_t len)
{
/* The short form of ?: is a GNU extension.
* FIXME: map_physical returns NULL both for errors and for success
* if the region is mapped at virtual address zero. If in doubt, report
* an error until a better interface exists.
*/
return map_physical(phys_addr, len) ? : ERROR_PTR;
}
/* The OS X driver does not differentiate between mapping types. */
#define sys_physmap_rw_uncached sys_physmap
#define sys_physmap_ro_cached sys_physmap
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
{
unmap_physical(virt_addr, len);
}
#else
#include <sys/mman.h>
#if defined (__sun) && (defined(__i386) || defined(__amd64))
# define MEM_DEV "/dev/xsvc"
#else
# define MEM_DEV "/dev/mem"
#endif
static int fd_mem = -1;
static int fd_mem_cached = -1;
/* For MMIO access. Must be uncached, doesn't make sense to restrict to ro. */
static void *sys_physmap_rw_uncached(uintptr_t phys_addr, size_t len)
{
void *virt_addr;
if (-1 == fd_mem) {
/* Open the memory device UNCACHED. Important for MMIO. */
if (-1 == (fd_mem = open(MEM_DEV, O_RDWR | O_SYNC))) {
msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno));
return ERROR_PTR;
}
}
virt_addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, fd_mem, (off_t)phys_addr);
return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr;
}
/* For reading DMI/coreboot/whatever tables. We should never write, and we
* do not care about caching.
*/
static void *sys_physmap_ro_cached(uintptr_t phys_addr, size_t len)
{
void *virt_addr;
if (-1 == fd_mem_cached) {
/* Open the memory device CACHED. */
if (-1 == (fd_mem_cached = open(MEM_DEV, O_RDWR))) {
msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno));
return ERROR_PTR;
}
}
virt_addr = mmap(NULL, len, PROT_READ, MAP_SHARED, fd_mem_cached, (off_t)phys_addr);
return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr;
}
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
{
munmap(virt_addr, len);
}
#endif
#define PHYSM_RW 0
#define PHYSM_RO 1
#define PHYSM_NOCLEANUP 0
#define PHYSM_CLEANUP 1
#define PHYSM_EXACT 0
#define PHYSM_ROUND 1
/* Round start to nearest page boundary below and set len so that the resulting address range ends at the lowest
* possible page boundary where the original address range is still entirely contained. It returns the
* difference between the rounded start address and the original start address. */
static uintptr_t round_to_page_boundaries(uintptr_t *start, size_t *len)
{
uintptr_t page_size = getpagesize();
uintptr_t page_mask = ~(page_size-1);
uintptr_t end = *start + *len;
uintptr_t old_start = *start;
msg_gspew("page_size=%" PRIxPTR "\n", page_size);
msg_gspew("pre-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n",
PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, end);
*start = *start & page_mask;
end = (end + page_size - 1) & page_mask;
*len = end - *start;
msg_gspew("post-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n",
PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, *start + *len);
return old_start - *start;
}
struct undo_physmap_data {
void *virt_addr;
size_t len;
};
static int undo_physmap(void *data)
{
if (data == NULL) {
msg_perr("%s: tried to physunmap without valid data!\n", __func__);
return 1;
}
struct undo_physmap_data *d = data;
physunmap_unaligned(d->virt_addr, d->len);
free(data);
return 0;
}
static void *physmap_common(const char *descr, uintptr_t phys_addr, size_t len, bool readonly, bool autocleanup,
bool round)
{
void *virt_addr;
uintptr_t offset = 0;
if (len == 0) {
msg_pspew("Not mapping %s, zero size at 0x%0*" PRIxPTR ".\n", descr, PRIxPTR_WIDTH, phys_addr);
return ERROR_PTR;
}
if (round)
offset = round_to_page_boundaries(&phys_addr, &len);
if (readonly)
virt_addr = sys_physmap_ro_cached(phys_addr, len);
else
virt_addr = sys_physmap_rw_uncached(phys_addr, len);
if (ERROR_PTR == virt_addr) {
if (NULL == descr)
descr = "memory";
msg_perr("Error accessing %s, 0x%zx bytes at 0x%0*" PRIxPTR "\n",
descr, len, PRIxPTR_WIDTH, phys_addr);
msg_perr(MEM_DEV " mmap failed: %s\n", strerror(errno));
#ifdef __linux__
if (EINVAL == errno) {
msg_perr("In Linux this error can be caused by the CONFIG_NONPROMISC_DEVMEM (<2.6.27),\n");
msg_perr("CONFIG_STRICT_DEVMEM (>=2.6.27) and CONFIG_X86_PAT kernel options.\n");
msg_perr("Please check if either is enabled in your kernel before reporting a failure.\n");
msg_perr("You can override CONFIG_X86_PAT at boot with the nopat kernel parameter but\n");
msg_perr("disabling the other option unfortunately requires a kernel recompile. Sorry!\n");
}
#elif defined (__OpenBSD__)
msg_perr("Please set securelevel=-1 in /etc/rc.securelevel "
"and reboot, or reboot into\n"
"single user mode.\n");
#endif
return ERROR_PTR;
}
if (autocleanup) {
struct undo_physmap_data *d = malloc(sizeof(*d));
if (d == NULL) {
msg_perr("%s: Out of memory!\n", __func__);
physunmap_unaligned(virt_addr, len);
return ERROR_PTR;
}
d->virt_addr = virt_addr;
d->len = len;
if (register_shutdown(undo_physmap, d) != 0) {
msg_perr("%s: Could not register shutdown function!\n", __func__);
physunmap_unaligned(virt_addr, len);
return ERROR_PTR;
}
}
return virt_addr + offset;
}
void physunmap_unaligned(void *virt_addr, size_t len)
{
/* No need to check for zero size, such mappings would have yielded ERROR_PTR. */
if (virt_addr == ERROR_PTR) {
msg_perr("Trying to unmap a nonexisting mapping!\n"
"Please report a bug at [email protected]\n");
return;
}
sys_physunmap_unaligned(virt_addr, len);
}
void physunmap(void *virt_addr, size_t len)
{
uintptr_t tmp;
/* No need to check for zero size, such mappings would have yielded ERROR_PTR. */
if (virt_addr == ERROR_PTR) {
msg_perr("Trying to unmap a nonexisting mapping!\n"
"Please report a bug at [email protected]\n");
return;
}
tmp = (uintptr_t)virt_addr;
/* We assume that the virtual address of a page-aligned physical address is page-aligned as well. By
* extension, rounding a virtual unaligned address as returned by physmap should yield the same offset
* between rounded and original virtual address as between rounded and original physical address.
*/
round_to_page_boundaries(&tmp, &len);
virt_addr = (void *)tmp;
physunmap_unaligned(virt_addr, len);
}
void *physmap(const char *descr, uintptr_t phys_addr, size_t len)
{
return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_NOCLEANUP, PHYSM_ROUND);
}
void *rphysmap(const char *descr, uintptr_t phys_addr, size_t len)
{
return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_CLEANUP, PHYSM_ROUND);
}
void *physmap_ro(const char *descr, uintptr_t phys_addr, size_t len)
{
return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_ROUND);
}
void *physmap_ro_unaligned(const char *descr, uintptr_t phys_addr, size_t len)
{
return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_EXACT);
}
/* Prevent reordering and/or merging of reads/writes to hardware.
* Such reordering and/or merging would break device accesses which depend on the exact access order.
*/
static inline void sync_primitive(void)
{
/* This is not needed for...
* - x86: uses uncached accesses which have a strongly ordered memory model.
* - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model.
* - ARM: uses a strongly ordered memory model for device memories.
*
* See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt
*/
// cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h
#if defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || \
defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || \
defined(_ARCH_PPC64) || defined(__ppc)
__asm__("eieio" : : : "memory");
#elif (__sparc__) || defined (__sparc)
#if defined(__sparc_v9__) || defined(__sparcv9)
/* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like
* RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we
* use the strongest hardware memory barriers that exist on Sparc V9. */
__asm__ volatile ("membar #Sync" ::: "memory");
#elif defined(__sparc_v8__) || defined(__sparcv8)
/* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run
* on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable
* operation in the V8 instruction set anyway. If you know better then please tell us. */
__asm__ volatile ("stbar");
#else
#error Unknown and/or unsupported SPARC instruction set version detected.
#endif
#endif
}
void mmio_writeb(uint8_t val, void *addr)
{
*(volatile uint8_t *) addr = val;
sync_primitive();
}
void mmio_writew(uint16_t val, void *addr)
{
*(volatile uint16_t *) addr = val;
sync_primitive();
}
void mmio_writel(uint32_t val, void *addr)
{
*(volatile uint32_t *) addr = val;
sync_primitive();
}
uint8_t mmio_readb(const void *addr)
{
return *(volatile const uint8_t *) addr;
}
uint16_t mmio_readw(const void *addr)
{
return *(volatile const uint16_t *) addr;
}
uint32_t mmio_readl(const void *addr)
{
return *(volatile const uint32_t *) addr;
}
void mmio_readn(const void *addr, uint8_t *buf, size_t len)
{
memcpy(buf, addr, len);
return;
}
void mmio_le_writeb(uint8_t val, void *addr)
{
mmio_writeb(cpu_to_le8(val), addr);
}
void mmio_le_writew(uint16_t val, void *addr)
{
mmio_writew(cpu_to_le16(val), addr);
}
void mmio_le_writel(uint32_t val, void *addr)
{
mmio_writel(cpu_to_le32(val), addr);
}
uint8_t mmio_le_readb(const void *addr)
{
return le_to_cpu8(mmio_readb(addr));
}
uint16_t mmio_le_readw(const void *addr)
{
return le_to_cpu16(mmio_readw(addr));
}
uint32_t mmio_le_readl(const void *addr)
{
return le_to_cpu32(mmio_readl(addr));
}
enum mmio_write_type {
mmio_write_type_b,
mmio_write_type_w,
mmio_write_type_l,
};
struct undo_mmio_write_data {
void *addr;
int reg;
enum mmio_write_type type;
union {
uint8_t bdata;
uint16_t wdata;
uint32_t ldata;
};
};
static int undo_mmio_write(void *p)
{
struct undo_mmio_write_data *data = p;
msg_pdbg("Restoring MMIO space at %p\n", data->addr);
switch (data->type) {
case mmio_write_type_b:
mmio_writeb(data->bdata, data->addr);
break;
case mmio_write_type_w:
mmio_writew(data->wdata, data->addr);
break;
case mmio_write_type_l:
mmio_writel(data->ldata, data->addr);
break;
}
/* p was allocated in register_undo_mmio_write. */
free(p);
return 0;
}
#define register_undo_mmio_write(a, c) \
{ \
struct undo_mmio_write_data *undo_mmio_write_data; \
undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data)); \
if (!undo_mmio_write_data) { \
msg_gerr("Out of memory!\n"); \
exit(1); \
} \
undo_mmio_write_data->addr = a; \
undo_mmio_write_data->type = mmio_write_type_##c; \
undo_mmio_write_data->c##data = mmio_read##c(a); \
register_shutdown(undo_mmio_write, undo_mmio_write_data); \
}
#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b)
#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w)
#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l)
void rmmio_writeb(uint8_t val, void *addr)
{
register_undo_mmio_writeb(addr);
mmio_writeb(val, addr);
}
void rmmio_writew(uint16_t val, void *addr)
{
register_undo_mmio_writew(addr);
mmio_writew(val, addr);
}
void rmmio_writel(uint32_t val, void *addr)
{
register_undo_mmio_writel(addr);
mmio_writel(val, addr);
}
void rmmio_le_writeb(uint8_t val, void *addr)
{
register_undo_mmio_writeb(addr);
mmio_le_writeb(val, addr);
}
void rmmio_le_writew(uint16_t val, void *addr)
{
register_undo_mmio_writew(addr);
mmio_le_writew(val, addr);
}
void rmmio_le_writel(uint32_t val, void *addr)
{
register_undo_mmio_writel(addr);
mmio_le_writel(val, addr);
}
void rmmio_valb(void *addr)
{
register_undo_mmio_writeb(addr);
}
void rmmio_valw(void *addr)
{
register_undo_mmio_writew(addr);
}
void rmmio_vall(void *addr)
{
register_undo_mmio_writel(addr);
}