forked from ML4ITS/mtad-gat-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
172 lines (149 loc) · 5.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import json
from datetime import datetime
import torch.nn as nn
from args import get_parser
from utils import *
from mtad_gat import MTAD_GAT
from prediction import Predictor
from training import Trainer
if __name__ == "__main__":
id = datetime.now().strftime("%d%m%Y_%H%M%S")
parser = get_parser()
args = parser.parse_args()
dataset = args.dataset
window_size = args.lookback
spec_res = args.spec_res
normalize = args.normalize
n_epochs = args.epochs
batch_size = args.bs
init_lr = args.init_lr
val_split = args.val_split
shuffle_dataset = args.shuffle_dataset
use_cuda = args.use_cuda
print_every = args.print_every
log_tensorboard = args.log_tensorboard
group_index = args.group[0]
index = args.group[2:]
args_summary = str(args.__dict__)
print(args_summary)
if dataset == 'SMD':
output_path = f'output/SMD/{args.group}'
(x_train, _), (x_test, y_test) = get_data(f"machine-{group_index}-{index}", normalize=normalize)
elif dataset in ['MSL', 'SMAP']:
output_path = f'output/{dataset}'
(x_train, _), (x_test, y_test) = get_data(dataset, normalize=normalize)
else:
raise Exception(f'Dataset "{dataset}" not available.')
log_dir = f'{output_path}/logs'
if not os.path.exists(output_path):
os.makedirs(output_path)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
save_path = f"{output_path}/{id}"
x_train = torch.from_numpy(x_train).float()
x_test = torch.from_numpy(x_test).float()
n_features = x_train.shape[1]
target_dims = get_target_dims(dataset)
if target_dims is None:
out_dim = n_features
print(f"Will forecast and reconstruct all {n_features} input features")
elif type(target_dims) == int:
print(f"Will forecast and reconstruct input feature: {target_dims}")
out_dim = 1
else:
print(f"Will forecast and reconstruct input features: {target_dims}")
out_dim = len(target_dims)
train_dataset = SlidingWindowDataset(x_train, window_size, target_dims)
test_dataset = SlidingWindowDataset(x_test, window_size, target_dims)
train_loader, val_loader, test_loader = create_data_loaders(
train_dataset, batch_size, val_split, shuffle_dataset, test_dataset=test_dataset
)
model = MTAD_GAT(
n_features,
window_size,
out_dim,
kernel_size=args.kernel_size,
use_gatv2=args.use_gatv2,
feat_gat_embed_dim=args.feat_gat_embed_dim,
time_gat_embed_dim=args.time_gat_embed_dim,
gru_n_layers=args.gru_n_layers,
gru_hid_dim=args.gru_hid_dim,
forecast_n_layers=args.fc_n_layers,
forecast_hid_dim=args.fc_hid_dim,
recon_n_layers=args.recon_n_layers,
recon_hid_dim=args.recon_hid_dim,
dropout=args.dropout,
alpha=args.alpha
)
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr)
forecast_criterion = nn.MSELoss()
recon_criterion = nn.MSELoss()
trainer = Trainer(
model,
optimizer,
window_size,
n_features,
target_dims,
n_epochs,
batch_size,
init_lr,
forecast_criterion,
recon_criterion,
use_cuda,
save_path,
log_dir,
print_every,
log_tensorboard,
args_summary
)
trainer.fit(train_loader, val_loader)
plot_losses(trainer.losses, save_path=save_path, plot=False)
# Check test loss
test_loss = trainer.evaluate(test_loader)
print(f"Test forecast loss: {test_loss[0]:.5f}")
print(f"Test reconstruction loss: {test_loss[1]:.5f}")
print(f"Test total loss: {test_loss[2]:.5f}")
# Some suggestions for POT args
level_q_dict = {
"SMAP": (0.90, 0.005),
"MSL": (0.90, 0.001),
"SMD-1": (0.9950, 0.001),
"SMD-2": (0.9925, 0.001),
"SMD-3": (0.9999, 0.001)
}
key = "SMD-" + args.group[0] if args.dataset == "SMD" else args.dataset
level, q = level_q_dict[key]
if args.level is not None:
level = args.level
if args.q is not None:
q = args.q
# Some suggestions for Epsilon args
reg_level_dict = {"SMAP": 0, "MSL": 0, "SMD-1": 1, "SMD-2": 1, "SMD-3": 1}
key = "SMD-" + args.group[0] if dataset == "SMD" else dataset
reg_level = reg_level_dict[key]
trainer.load(f"{save_path}/model.pt")
prediction_args = {
'dataset': dataset,
"target_dims": target_dims,
'scale_scores': args.scale_scores,
"level": level,
"q": q,
'dynamic_pot': args.dynamic_pot,
"use_mov_av": args.use_mov_av,
"gamma": args.gamma,
"reg_level": reg_level,
"save_path": save_path,
}
best_model = trainer.model
predictor = Predictor(
best_model,
window_size,
n_features,
prediction_args,
)
label = y_test[window_size:] if y_test is not None else None
predictor.predict_anomalies(x_train, x_test, label)
# Save config
args_path = f"{save_path}/config.txt"
with open(args_path, "w") as f:
json.dump(args.__dict__, f, indent=2)