-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparallel_identify_from_rtmp_0602.py
168 lines (132 loc) · 6.61 KB
/
parallel_identify_from_rtmp_0602.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import face_recognition
import cv2
import PIL.Image
import numpy as np
import multiprocessing
import click
import sys
import itertools
# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video.
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
def process_images_in_process_pool(rgb_small_frame, known_names, known_face_encodings, number_of_cpus, tolerance, show_distance):
if number_of_cpus == -1:
processes = None
else:
processes = number_of_cpus
# macOS will crash due to a bug in libdispatch if you don't use 'forkserver'
context = multiprocessing
if "forkserver" in multiprocessing.get_all_start_methods():
context = multiprocessing.get_context("forkserver")
pool = context.Pool(processes=processes)
function_parameters = zip(
rgb_small_frame,
itertools.repeat(known_names),
itertools.repeat(known_face_encodings),
itertools.repeat(tolerance),
itertools.repeat(show_distance)
)
pool.starmap(test_image, function_parameters)
def test_image(rgb_small_frame, known_names, known_face_encodings, tolerance=0.6, show_distance=False):
#Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
print('2')
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
# @click.command()
# @click.argument('known_people_folder')
# @click.option('--rtmp_addr', default='rtmp://server.blackant.org:1935/live_2710/hello')
# @click.option('--cpus', default=1, help='number of CPU cores to use in parallel (can speed up processing lots of images). -1 means "use all in system"')
# @click.option('--tolerance', default=0.6, help='Tolerance for face comparisons. Default is 0.6. Lower this if you get multiple matches for the same person.')
# @click.option('--show-distance', default=False, type=bool, help='Output face distance. Useful for tweaking tolerance setting.')
def main():
rtmp_addr = 'rtmp://server.blackant.org:1935/live_2710/hello'
cpus = 4
tolerance = 0.6
show_distance = False
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
# Multi-core processing only supported on Python 3.4 or greater
if (sys.version_info < (3, 4)) and cpus != 1:
click.echo("WARNING: Multi-processing support requires Python 3.4 or greater. Falling back to single-threaded processing!")
cpus = 1
# Get a reference to webcam #0 (the default rtmp_addr)
video_capture = cv2.VideoCapture(rtmp_addr)
#video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("./known_people/yang.png")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
print('finished training yang')
# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("./known_people/zhu.png")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
print('finished training zhu')
# Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Yang",
"Zhu"
]
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
print('1')
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
if cpus == 1:
test_image(rgb_small_frame, known_face_names, known_face_encodings, tolerance, show_distance)
else:
process_images_in_process_pool(rgb_small_frame, known_face_names, known_face_encodings, cpus, tolerance, show_distance)
# test_image(rgb_small_frame, known_face_names, known_face_encodings, tolerance, show_distance)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()