-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathwbi2cdma.v
620 lines (564 loc) · 16.5 KB
/
wbi2cdma.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
////////////////////////////////////////////////////////////////////////////////
//
// Filename: rtl/wbi2c/wbi2cdma.v
// {{{
// Project: 10Gb Ethernet switch
//
// Purpose: This is a basic stream to memory DMA. It's designed to work
// with the I2C controller, where memory accesses are on a byte by
// byte basis and rare. Rare, in this case, means no more than one byte
// written to the bus every 2000 clock cycles or more--consistent with an
// I2C interface running at a 400kHz clock cycle. As a result, there's no
// buffering, and stream data is immediately written to memory as soon as
// its received. Similarly, since this is designed to write bytes, all
// bytes will be aligned by nature. If the stream width is increased
// beyond 8bits (a non-I2C application), the address will need to remain
// aligned.
//
// The design is activated as soon as a memory area, with a non-zero size,
// is allotted to it. It will remain active as long as the size remains
// non-zero and no bus errors are received.
//
// On receiving a stream LAST, the internal address pointer will return
// to the base address, and any subsequent writes will start over from
// that point. After a LAST, the current address register will point to
// one past the last address written to--allowing software to read how
// many bytes have been written to memory.
//
// typedef struct I2CDMA_S {
// volatile unsigned id_control, id_current,
// id_base, id_memlen;
// } I2CDMA;
//
// I2CDMA *dev;
//
// bytes_written_to_memory = dev->id_current - dev->id_base;
//
// Registers:
// 0: Control/Status
// 1: Active. Data has been received without receiving a
// last.
// 0: (Bus) Error. The design is deactivated on an error.
// Write a new base address or length to clear this bit.
// 1: (Current address)
// This is almost, but not quite, the current address pointer.
// The actual current address will return to the base address
// once a LAST is received. This address will increment up to and
// including the LAST item. Hence, if nothing has been received,
// this will reflect the base address. If LAST has been received,
// then the difference between this and the base address will be
// the length of data received.
// 2: Base address (No alignment required)
// 3: Allocated length (Byte alignment)
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2023-2024, Gisselquist Technology, LLC
// {{{
// This file is part of the ETH10G project.
//
// The ETH10G project contains free software and gateware, licensed under the
// terms of the 3rd version of the GNU General Public License as published by
// the Free Software Foundation.
//
// This project is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
// }}}
// License: GPL, v3, as defined and found on www.gnu.org,
// {{{
// http://www.gnu.org/licenses/gpl.html
//
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none
// }}}
module wbi2cdma #(
// {{{
parameter AW = 28,
parameter DW = 32,
parameter SW = 8,
parameter [0:0] OPT_LITTLE_ENDIAN = 1'b0,
parameter [0:0] OPT_LOWPOWER = 1'b0
// }}}
) (
// {{{
input wire i_clk, i_reset,
// Control port
// {{{
input wire i_wb_cyc, i_wb_stb, i_wb_we,
input wire [1:0] i_wb_addr,
input wire [31:0] i_wb_data,
input wire [3:0] i_wb_sel,
output wire o_wb_stall,
output reg o_wb_ack,
output reg [31:0] o_wb_data,
// }}}
// Stream port
// {{{
input wire S_VALID,
output wire S_READY,
input wire [SW-1:0] S_DATA,
input wire S_LAST,
// }}}
// DMA master port
// {{{
output reg o_dma_cyc, o_dma_stb,
output wire o_dma_we,
output reg [AW-1:0] o_dma_addr,
output reg [DW-1:0] o_dma_data,
output reg [DW/8-1:0] o_dma_sel,
input wire i_dma_stall,
input wire i_dma_ack,
input wire [DW-1:0] i_dma_data,
input wire i_dma_err
// }}}
// }}}
);
// Local declarations
// {{{
localparam SUBLSB = $clog2(SW/8);
localparam WBLSB = $clog2(DW/SW);
localparam ADDRESS_WIDTH = AW + WBLSB;
reg [ADDRESS_WIDTH-1:0] r_baseaddr, r_memlen;
reg [WBLSB-1:0] subaddr;
reg [ADDRESS_WIDTH-1:0] current_addr;
reg [31:0] next_baseaddr, next_memlen;
reg wb_last, bus_err, r_reset, r_overflow;
wire skd_valid, skd_ready, skd_last;
wire [SW-1:0] skd_data;
// }}}
////////////////////////////////////////////////////////////////////////
//
// Control
// {{{
////////////////////////////////////////////////////////////////////////
always @(posedge i_clk)
if (i_reset)
bus_err <= 1'b0;
else if (o_dma_cyc && i_dma_err)
bus_err <= 1'b1;
else if (i_wb_stb && !o_wb_stall && i_wb_we)
case(i_wb_addr)
2'b00: begin end // Control
2'b01: begin end // Current address
2'b10: bus_err <= bus_err && (i_wb_sel == 0);
2'b11: bus_err <= bus_err && (i_wb_sel == 0);
endcase
always @(*)
begin
next_baseaddr = 0;
next_baseaddr[ADDRESS_WIDTH-1:0] = r_baseaddr;
next_baseaddr = next_baseaddr << SUBLSB;
next_baseaddr = apply_strb(next_baseaddr, i_wb_sel, i_wb_data);
next_baseaddr = next_baseaddr >> SUBLSB;
next_memlen = 0;
next_memlen[ADDRESS_WIDTH-1:0] = r_memlen;
next_memlen = next_memlen << SUBLSB;
next_memlen = apply_strb(next_memlen, i_wb_sel, i_wb_data);
next_memlen = next_memlen >> SUBLSB;
end
initial r_baseaddr = 0;
initial r_memlen = 0;
initial r_reset = 1;
always @(posedge i_clk)
if (i_reset)
begin
r_baseaddr <= 0;
r_memlen <= 0;
r_reset <= 1;
end else if (i_wb_stb && !o_wb_stall && i_wb_we)
case(i_wb_addr)
2'b00: begin end // Control
2'b01: begin end // Current address
2'b10: begin
r_baseaddr <= next_baseaddr[ADDRESS_WIDTH-1:0];
r_reset <= r_reset || (|i_wb_sel);
end
2'b11: begin
r_memlen <= next_memlen[ADDRESS_WIDTH-1:0];
r_reset <= r_reset || (|i_wb_sel);
end
endcase else if (!i_wb_cyc)
begin
r_reset <= (r_memlen == 0) || bus_err
|| (r_baseaddr + r_memlen >= (1<<(AW+WBLSB)));
end
assign o_wb_stall = 1'b0;
initial o_wb_ack = 1'b0;
always @(posedge i_clk)
if (i_reset)
o_wb_ack <= 1'b0;
else
o_wb_ack <= i_wb_stb && !o_wb_stall;
initial o_wb_data = 0;
always @(posedge i_clk)
begin
o_wb_data <= 32'h0;
case(i_wb_addr)
2'b00: begin
o_wb_data[1] <= !wb_last
&& (current_addr != r_baseaddr);
o_wb_data[0] <= bus_err;
end
2'b01: o_wb_data[ADDRESS_WIDTH-1:0] <= current_addr;
2'b10: o_wb_data[ADDRESS_WIDTH-1:0] <= r_baseaddr;
2'b11: o_wb_data[ADDRESS_WIDTH-1:0] <= r_memlen;
endcase
if (OPT_LOWPOWER && (i_reset || !i_wb_stb
|| !i_wb_we || i_wb_sel == 0))
o_wb_data <= 0;
end
function automatic [31:0] apply_strb(input [31:0] old,
input [ 3:0] strb,
input [31:0] nxt);
begin
apply_strb[31:24] = (strb[3]) ? nxt[31:24] : old[31:24];
apply_strb[23:16] = (strb[2]) ? nxt[23:16] : old[23:16];
apply_strb[15: 8] = (strb[1]) ? nxt[15: 8] : old[15: 8];
apply_strb[ 7: 0] = (strb[0]) ? nxt[ 7: 0] : old[ 7: 0];
end endfunction
// }}}
////////////////////////////////////////////////////////////////////////
//
// Stream processing
// {{{
////////////////////////////////////////////////////////////////////////
skidbuffer #(
.DW(1+SW), .OPT_LOWPOWER(OPT_LOWPOWER)
) sskd (
// {{{
.i_clk(i_clk), .i_reset(i_reset),
//
.i_valid(S_VALID), .o_ready(S_READY),
.i_data({ S_LAST, S_DATA }),
//
.o_valid(skd_valid), .i_ready(skd_ready),
.o_data({ skd_last, skd_data })
// }}}
);
assign skd_ready = r_reset || bus_err || !o_dma_cyc;
// }}}
////////////////////////////////////////////////////////////////////////
//
// DMA
// {{{
////////////////////////////////////////////////////////////////////////
assign o_dma_we = 1'b1;
initial { o_dma_cyc, o_dma_stb } = 2'b00;
always @(posedge i_clk)
if (i_reset || r_reset || bus_err || (o_dma_cyc && i_dma_err))
{ o_dma_cyc, o_dma_stb } <= 2'b00;
else if (o_dma_cyc)
begin
if (!i_dma_stall)
o_dma_stb <= 1'b0;
if (i_dma_ack)
o_dma_cyc <= 1'b0;
end else if (skd_valid)
begin
if (r_overflow && !wb_last)
{ o_dma_cyc, o_dma_stb } <= 2'b00;
else
{ o_dma_cyc, o_dma_stb } <= 2'b11;
end
always @(posedge i_clk)
if (r_reset)
wb_last <= 1'b1;
else if (skd_valid && skd_ready)
wb_last <= skd_last;
// o_dma_addr, subaddr
// {{{
always @(posedge i_clk)
if (r_reset || bus_err)
{ o_dma_addr, subaddr } <= r_baseaddr;
else if ((!o_dma_stb || !i_dma_stall) && (wb_last || r_overflow))
{ o_dma_addr, subaddr } <= r_baseaddr;
else if (skd_valid && skd_ready && !r_overflow)
{ o_dma_addr, subaddr } <= { o_dma_addr, subaddr } + 1;
// }}}
// r_overflow
// {{{
always @(posedge i_clk)
if (r_reset)
r_overflow <= 0;
else if ((!o_dma_stb || !i_dma_stall) && wb_last)
r_overflow <= 0;
else if (skd_valid && skd_ready && skd_last)
r_overflow <= 1'b0;
else if (!r_overflow)
r_overflow <= ({ o_dma_addr, subaddr } + 1 - r_baseaddr
>= r_memlen);
// }}}
// o_dma_sel
// {{{
generate if (OPT_LITTLE_ENDIAN)
begin : GEN_LILSEL
always @(posedge i_clk)
if (r_reset || bus_err)
o_dma_sel <= { {(DW/8-1){1'b0}},1'b1 } << r_baseaddr[WBLSB-1:0];
else if ((!o_dma_stb || !i_dma_stall) &&(wb_last || r_overflow))
o_dma_sel <= { {(DW/8-1){1'b0}},1'b1 } << r_baseaddr[WBLSB-1:0];
else if (skd_valid && skd_ready)
o_dma_sel <= { o_dma_sel[(DW-SW)/8-1:0], o_dma_sel[DW/8-1: (DW-SW)/8] };
end else begin : GEN_BIGSEL
always @(posedge i_clk)
if (r_reset || bus_err)
o_dma_sel <= { 1'b1, {(DW/8-1){1'b0}} } >> r_baseaddr[WBLSB-1:0];
else if ((!o_dma_stb || !i_dma_stall) && (wb_last || r_overflow))
o_dma_sel <= { 1'b1, {(DW/8-1){1'b0}} } >> r_baseaddr[WBLSB-1:0];
else if (skd_valid && skd_ready)
o_dma_sel <= { o_dma_sel[SW/8-1:0], o_dma_sel[DW/8-1:SW/8] };
end endgenerate
// }}}
// o_dma_data
// {{{
generate if (!OPT_LOWPOWER)
begin : GEN_DATABLAST
always @(posedge i_clk)
if (skd_ready)
o_dma_data <= {(DW/SW){skd_data }};
end else if (OPT_LITTLE_ENDIAN)
begin : GEN_LILDATA
// {{{
always @(posedge i_clk)
if (r_reset || bus_err)
o_dma_data <= 0;
else if (skd_valid && skd_ready)
begin
if (wb_last)
o_dma_data <= { {(DW-1){1'b0}},skd_data } << r_baseaddr[WBLSB-1:0]*SW;
else
o_dma_data <= { {(DW-1){1'b0}},skd_data } << subaddr*SW;
end
// }}}
end else begin : GEN_BIGDATA
always @(posedge i_clk)
if (r_reset || bus_err)
o_dma_data <= 0;
else if (skd_valid && skd_ready)
begin
if (wb_last)
o_dma_data <= { skd_data, {(DW-1){1'b0}} } >> r_baseaddr[WBLSB-1:0];
else
o_dma_data <= { skd_data, {(DW-1){1'b0}} } >> subaddr;
end
end endgenerate
// }}}
always @(posedge i_clk)
if (r_reset)
current_addr <= r_baseaddr;
else if (o_dma_stb && !i_dma_stall)
current_addr <= { o_dma_addr, subaddr } + 1;
// }}}
// Keep Verilator happy
// {{{
// Verilator lint_off UNUSED
wire unused;
assign unused = &{ 1'b0, i_dma_data };
// Verilator lint_on UNUSED
// }}}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// Formal properties
// {{{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
localparam F_LGDEPTH=4, F_LGCOUNT=12;
reg f_past_valid;
wire [AW+WBLSB-1:0] fdma_addr;
initial f_past_valid = 0;
always @(posedge i_clk)
f_past_valid <= 1;
always @(*)
if (!f_past_valid)
assume(i_reset);
assign fdma_addr = { o_dma_addr, subaddr };
////////////////////////////////////////////////////////////////////////
//
// Control port (WB slave) properties
// {{{
////////////////////////////////////////////////////////////////////////
//
//
wire [1:0] fwb_nreqs, fwb_nacks, fwb_noutstanding;
fwb_slave #(
.AW(2), .DW(32), .F_MAX_STALL(1), .F_MAX_ACK_DELAY(2),
.F_LGDEPTH(2)
) fslv (
// {{{
.i_clk(i_clk), .i_reset(i_reset),
//
.i_wb_cyc(i_wb_cyc), .i_wb_stb(i_wb_stb), .i_wb_we(i_wb_we),
.i_wb_addr(i_wb_addr),
.i_wb_data(i_wb_data), .i_wb_sel(i_wb_sel),
.i_wb_stall(o_wb_stall),
.i_wb_idata(o_wb_data),
.i_wb_ack(o_wb_ack),
.i_wb_err(1'b0),
.f_nreqs(fwb_nreqs),
.f_nacks(fwb_nacks),
.f_outstanding(fwb_noutstanding)
// }}}
);
always @(*)
if (!i_reset && i_wb_cyc)
begin
assert(fwb_noutstanding == (o_wb_ack ? 1:0));
end
// }}}
////////////////////////////////////////////////////////////////////////
//
// Incoming stream assumptions
// {{{
////////////////////////////////////////////////////////////////////////
//
//
reg [F_LGCOUNT-1:0] s_count;
always @(posedge i_clk)
if (!f_past_valid)
assume(!S_VALID);
else if ($past(i_reset))
assume(!S_VALID);
else if ($past(S_VALID && !S_READY))
begin
assume(S_VALID);
assume($stable(S_DATA));
assume($stable(S_LAST));
end
always @(posedge i_clk)
if (i_reset || r_reset)
s_count <= 0;
else if (skd_valid && skd_ready)
s_count <= (skd_last) ? 0 : (s_count + 1);
always @(*)
assume(!(&s_count));
// }}}
////////////////////////////////////////////////////////////////////////
//
// DMA (WB master) properties
// {{{
////////////////////////////////////////////////////////////////////////
//
//
wire [F_LGDEPTH-1:0] fdma_nreqs, fdma_nacks, fdma_noutstanding;
fwb_master #(
.AW(AW), .DW(DW), .F_LGDEPTH(F_LGDEPTH)
) fdma (
// {{{
.i_clk(i_clk), .i_reset(i_reset),
//
.i_wb_cyc(o_dma_cyc), .i_wb_stb(o_dma_stb), .i_wb_we(o_dma_we),
.i_wb_addr(o_dma_addr),
.i_wb_data(o_dma_data), .i_wb_sel(o_dma_sel),
.i_wb_stall(i_dma_stall),
.i_wb_idata(i_dma_data),
.i_wb_ack(i_dma_ack),
.i_wb_err(1'b0),
.f_nreqs(fdma_nreqs),
.f_nacks(fdma_nacks),
.f_outstanding(fdma_noutstanding)
// }}}
);
always @(posedge i_clk)
if (o_dma_cyc)
begin
assert(fdma_nreqs == (o_dma_stb ? 0 : 1));
assert(fdma_nacks == 0);
end
always @(posedge i_clk)
if (!i_reset && !r_reset)
begin
assert($countones(o_dma_sel)==1);
assert(wb_last == (s_count == 0));
if (!bus_err && s_count != 0 && !r_overflow)
assert(fdma_addr ==r_baseaddr + s_count-1);
if (!r_overflow)
begin
assert(fdma_addr >= r_baseaddr);
assert(fdma_addr < r_baseaddr + r_memlen);
end
end
generate if (OPT_LITTLE_ENDIAN)
begin : GEN_LITTLE_ENDIAN_SELCHECK
always @(posedge i_clk)
if (!i_reset && !r_reset && !bus_err)
assert(o_dma_sel == ({{((DW-SW)/8){1'b0}},
{(SW/8){1'b1}} } >> subaddr));
end else begin : GEN_BIG_ENDIAN_SELCHECK
always @(posedge i_clk)
if (!i_reset && !r_reset && !bus_err)
assert(o_dma_sel == ({{(SW/8){1'b1}},
{((DW-SW)/8){1'b0}} } >> subaddr));
end endgenerate
always @(*)
if (!i_reset && !r_reset)
begin
assert(r_memlen != 0);
assert(r_memlen + r_baseaddr < (1<<(AW+WBLSB)));
end
// }}}
////////////////////////////////////////////////////////////////////////
//
// Contract checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
(* anyconst *) reg [F_LGCOUNT-1:0] fc_count;
(* anyconst *) reg [SW-1:0] fc_data;
reg [DW-1:0] f_shifted;
always @(*)
if (s_count == fc_count)
assume(skd_data == fc_data);
generate if (OPT_LITTLE_ENDIAN)
begin : GEN_LITTLE_ENDIAN_CONTRACT
always @(*)
f_shifted = o_dma_data >> subaddr * SW;
always @(posedge i_clk)
if (o_dma_stb && s_count == fc_count+1)
assert(f_shifted[SW-1:0] == fc_data);
end else begin : GEN_BIG_ENDIAN_CONTRACT
always @(*)
f_shifted = o_dma_data << subaddr*SW;
always @(posedge i_clk)
if (o_dma_stb && s_count == fc_count+1)
assert(f_shifted[DW-1:DW-SW] == fc_data);
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Cover checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
(* anyconst *) reg fcvr;
always @(*)
if (fcvr)
assume(skd_last == (s_count == 7));
always @(*)
cover(o_dma_stb && wb_last && fcvr);
// }}}
////////////////////////////////////////////////////////////////////////
//
// Careless assumptions
// {{{
// always @(*) assume(i_reset || r_reset || !r_overflow);
// }}}
`endif // FORMAL
// }}}
endmodule