-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRecognition.py
121 lines (81 loc) · 2.66 KB
/
Recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# coding: utf-8
# In[1]:
import h5py
import numpy as np
np.random.seed(1337)
from keras.optimizers import SGD
# In[2]:
h5f = h5py.File('preprocessed_data_winSize100_winShift10.h5','r')
training_data = h5f['training_data'][:]
training_output = h5f['training_output'][:]
testing_data = h5f['testing_data'][:]
testing_output = h5f['testing_output'][:]
h5f = h5py.File('preprocessed_data_winSize100_winShift10_mean_sd.h5','r')
mean = h5f['mean'][:]
sd = h5f['sd'][:]
h5f.close()
print(training_data.shape,training_output.shape,testing_data.shape,testing_output.shape)
print("Concatenating training")
training = np.concatenate([training_data, training_output.reshape(training_output.shape[0],1)], axis=1)
print("Deleting training")
del training_data
del training_output
print("Shuffling training")
np.random.shuffle(training)
print("Concatenating testing")
testing = np.concatenate([testing_data, testing_output.reshape(testing_output.shape[0],1)], axis=1)
print("Deleting testing")
del testing_data
del testing_output
print("Shuffling Testing")
np.random.shuffle(testing)
print("Getting back train data and output")
training_data=training[:,:-1]
training_output=training[:,-1]
print("Deleting training")
del training
print("Getting back test data and output")
testing_data=testing[:,:-1]
testing_output=testing[:,-1]
print("Deleting testing")
del testing
print(training_data.shape,training_output.shape,testing_data.shape,testing_output.shape)
# In[8]:
testing_data=testing_data-mean
training_data=training_data-sd
# In[17]:
batch_size = 512
nb_classes = 7
nb_epoch = 10
lr = 0.00005
sgd = SGD(lr=lr)
training_data = training_data.astype('float32')
testing_data = testing_data.astype('float32')
# In[10]:
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
# In[11]:
Y_train = np_utils.to_categorical(training_output, nb_classes)
Y_test = np_utils.to_categorical(testing_output, nb_classes)
print(Y_test.shape)
# In[18]:
model = Sequential()
model.add(Dense(512, input_shape=(training_data.shape[1],)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.summary()
# In[19]:
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
history = model.fit(training_data, Y_train,
batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, validation_data=(testing_data, Y_test))
score = model.evaluate(testing_data, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
# In[ ]: