diff --git a/src/continuiti/operators/modulus/__init__.py b/src/continuiti/operators/modulus/__init__.py new file mode 100644 index 00000000..8731b5fe --- /dev/null +++ b/src/continuiti/operators/modulus/__init__.py @@ -0,0 +1,17 @@ +""" +`continuiti.operators.modulus` + +Operators from NVIDIA Modulus wrapped in continuiti. +""" + +# Test if we can import NVIDIA Modulus +try: + import modulus # noqa: F40 +except ImportError: + raise ImportError("NVIDIA Modulus not found!") + +from .fno import FNO + +__all__ = [ + "FNO", +] diff --git a/src/continuiti/operators/modulus/fno.py b/src/continuiti/operators/modulus/fno.py new file mode 100644 index 00000000..2f28f696 --- /dev/null +++ b/src/continuiti/operators/modulus/fno.py @@ -0,0 +1,61 @@ +""" +`continuiti.operators.modulus.fno` + +The Fourier Neural Operator from NVIDIA Modulus wrapped in continuiti. +""" + +import torch +from typing import Optional +from continuiti.operators import Operator, OperatorShapes +from modulus.models.fno import FNO as FNOModulus + + +class FNO(Operator): + r"""FNO architecture from NVIDIA Modulus. + + The `in_channels` and `out_channels` arguments are determined by the + `shapes` argument. The `dimension` is set to the dimension of the input + coordinates, assuming that the grid dimension is the same as the coordinate + dimension of `x`. + + All other keyword arguments are passed to the Fourier Neural Operator, please refer + to the documentation of the `modulus.model.fno.FNO` class for more information. + + Args: + shapes: Shapes of the input and output data. + device: Device. + **kwargs: Additional arguments for the Fourier layers. + """ + + def __init__( + self, + shapes: OperatorShapes, + device: Optional[torch.device] = None, + dimension: Optional[int] = None, + **kwargs, + ): + super().__init__(shapes, device) + + if dimension is None: + # Per default, use coordinate dimension + dimension = shapes.x.dim + + self.fno = FNOModulus( + in_channels=shapes.u.dim, + out_channels=shapes.v.dim, + dimension=dimension, + **kwargs, + ) + self.fno.to(device) + + def forward( + self, x: torch.Tensor, u: torch.Tensor, y: torch.Tensor + ) -> torch.Tensor: + r"""Forward pass of the Fourier Neural Operator. + + Args: + x: Ignored. + u: Input function values of shape (batch_size, u_dim, num_sensors...). + y: Ignored. + """ + return self.fno(u) diff --git a/tests/operators/modulus/__init__.py b/tests/operators/modulus/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/tests/operators/modulus/test_modulus_fno.py b/tests/operators/modulus/test_modulus_fno.py new file mode 100644 index 00000000..4ddbc60e --- /dev/null +++ b/tests/operators/modulus/test_modulus_fno.py @@ -0,0 +1,52 @@ +import pytest +from continuiti.benchmarks.sine import SineBenchmark +from continuiti.trainer import Trainer +from continuiti.operators.losses import MSELoss + + +@pytest.mark.slow +def test_modulus_fno(): + try: + from continuiti.operators.modulus import FNO + except ImportError: + pytest.skip("NVIDIA Modulus not found!") + + # Data set + benchmark = SineBenchmark(n_train=1) + dataset = benchmark.train_dataset + + # Operator + # Configured like the default continuiti `FourierNeuralOperator` + # with depth=3 and width=3 as in `test_fno.py`. + operator = FNO( + dataset.shapes, + decoder_layers=1, + decoder_layer_size=1, + decoder_activation_fn="identity", + num_fno_layers=3, # "depth" in FourierNeuralOperator + latent_channels=3, # "width" in FourierNeuralOperator + num_fno_modes=dataset.shapes.u.size[0] // 2 + 1, + padding=0, + coord_features=False, + ) + + # Train + Trainer(operator, device="cpu").fit(dataset, tol=1e-12, epochs=10_000) + + # Check solution + x, u, y, v = dataset.x, dataset.u, dataset.y, dataset.v + assert MSELoss()(operator, x, u, y, v) < 1e-12 + + +# SineBenchmark(n_train=1024, n_sensors=128, n_evaluations=128), epochs=100 + +# NVIDIA Modulus FNO +# Parameters: 3560 Device: cpu +# Epoch 100/100 Step 32/32 [====================] 6ms/step [0:19min<0:00min] - loss/train = 6.3876e-05 + +# continuiti FNO +# Parameters: 3556 Device: cpu +# Epoch 100/100 Step 32/32 [====================] 3ms/step [0:10min<0:00min] - loss/train = 1.4440e-04 + +# -> continuiti FNO is 2x faster than NVIDIA Modulus FNO +# -> NVIDIA Modulus FNO can not handle different number of sensors and evaluations