-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatixpartialpivoting.cc
197 lines (184 loc) · 5.29 KB
/
matixpartialpivoting.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//ME - C++17 - hope it compile
/*
* Authors: Alhussain Almarhabi
* */
//Reference - future review
/* Use assignment four, how to read files of .dat
*Use prof. Kruger matrix class and modify it
*/
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <cmath>
using namespace std;
class Matrix {
private:
int rows,cols;
double* m;
Matrix(int r, int c) : rows(r), cols(c), m(new double[r*c]) {}
public:
Matrix(int r, int c, double val) : rows(r), cols(c), m(new double[r*c]) {
for (int i = 0; i < r*c; i++)
m[i] = val;
}
~Matrix() {
delete [] m; //O(1)
}
Matrix(const Matrix& orig) : rows(orig.rows), cols(orig.cols), m(new double[rows*cols]) {
for (int i = 0; i < rows*cols; i++)
m[i] = orig.m[i]; //O(r*c)
}
//copy and swap
Matrix& operator =(const Matrix& orig) {
Matrix copy(orig); //O(rows*cols)
swap(m, copy.m);//O(1)
rows = copy.rows;//O(1)
cols = copy.cols;//O(1)
return *this;
}
#if 1
double operator[](int i) const {
return m[i] ;
}
double& operator[](int i) {
return m[i];
}
#endif
// move constructor
Matrix(Matrix&& orig) : rows(orig.rows), cols(orig.cols) {
m = orig.m;
orig.m = nullptr;
}
void display() {
for (int i = 0 ; i<rows*rows; i++){
cout << this->m[i]<< " ";
if (i % this->rows == (this->rows - 1)){cout << endl;}
}
}
//O(rows*cols) if they are the same O(n^2)
friend Matrix operator +(const Matrix& a, const Matrix& b) {
if (a.rows != b.rows || a.cols != b.cols)
throw "Bad matrix size";
Matrix ans(a.rows,a.cols); //O(1)
for (int i = 0; i < a.rows*a.cols; ++i)
ans.m[i] = a.m[i] + b.m[i];
return ans; //O(1)
}
double operator()(int i, int j) const {
return m[i*cols+j];
}
double& operator()(int i, int j) {
return m[i*cols+j];
}
friend Matrix operator *(const Matrix& a, const Matrix& b) {
if (a.cols != b.rows) {
throw "Bad matrix size";
}
Matrix ans(a.rows, b.cols);
for (int i = 0; i < a.rows; ++i){
for (int j = 0; j < b.cols; ++j) {
double dot = 0;
for (int k = 0; k < a.cols; k++){
dot += a(i, k) * b(k, j);
}
ans(i,j) = dot;
}
}
return ans;
}
static Matrix read(istream& s) {
int n;
s >> n;
cout<< "Number of rows: " << n<< endl;
Matrix m(n,n);
for (int i = 0; i < n*n; i++) {
s >> m.m[i];
cout << m.m[i] ;
cout << " ";
if ( (i % n) == n-1)
cout << endl;
}
return m;
}
void partialPivot(int i, vector<double>& B) {
int biggestPos = i;
double biggest = (*this)(i,i);
// partial pivoting
for (int j = i; j < rows; j++) {
if (std::abs((*this)(j,i)) > std::abs(biggest)) {
biggest = (*this)(j,i);
biggestPos = j;
}
}
double temp;
for (int j = 0; j < rows; j++) {
temp = (*this)(i,j);
(*this)(i,j) = (*this)(biggestPos,j);
(*this)(biggestPos,j) = temp;
}
temp = B[i];
B[i] = B[biggestPos];
B[biggestPos] = temp;
}
friend void backSubstitute(Matrix& m, vector<double>& x, vector<double>& B) {
for (int n = m.rows ; n > 0; n--) {
x[n - 1] = B[n - 1] / m(n - 1, n - 1);
for (int j = n - 2; j >= 0; j--) {
B[j] -= m(j, n) * x[n - 1];
}
}
}
friend vector<double> solve(Matrix &m, vector<double> &B) {
vector<double> x;
// rows = cols or we are DEAD
x.reserve(m.rows);
for (int i = 0; i < m.rows; i++) {
m.partialPivot(i, B);
for (int k = i + 1; k < m.rows; k++) {
double s = -m(k, i) / m(i, i);
m(k, i) = 0; // make sure this is exactly zero! // i+1 was j
for (int j = i + 1; j < m.cols; j++) {
m(k, j) += s * m(i, j); // modify remaining part of row
}
B[k] += s * B[i];
}
backSubstitute(m, x, B);
}
return x;
}
};
vector<double> read(int n, istream& s) {
vector<double> B;
B.reserve(n);
double tmp;
for (int i = 0; i < n; ++i) {
s >> tmp;
B.push_back(tmp);
}
return B;
}
int main() {
ifstream f("./mat.dat");
cout << "Read Matrix A: "<<endl;
Matrix A = Matrix::read(f);
cout << endl;
cout << "Read Vector B: " << endl;
vector<double> B = read(10, f);
for (int i=0; i < 10; i++){
cout << B[i]<<endl;
}
cout << endl;
vector<double> x = solve(A, B);
cout << "The solution for x in Ax=b is: " << endl;
for (int i = 0; i< 10; i++){
cout << x[i] << endl;
}
// you must print out the vector x
cout << endl;
cout << "modified A after backward subtituion"<<endl;
A.display();
cout<<endl;
cout << "modified B after backward subtitution" << endl;
for (int i = 0; i<10; i++){ cout<< B[i]<<endl;}
}