-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAES_Implementation.py
236 lines (194 loc) · 7.71 KB
/
AES_Implementation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import numpy as np
from copy import copy
from tabulate import tabulate
# Rijndael S-box
sbox = np.array( [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
0x54, 0xbb, 0x16] )
# For Key generation using openssl rand
# import os
# key=(os.popen('openssl rand -hex 16').read()[:-1])
# print(key)
key='0aea88fbafb0350b66b62eaa62340c40'
s1 = np.array([0x0a,0xea,0x88,0xfb,
0xaf,0xb0,0x35,0x0b,
0x66,0xb6,0x2e,0xaa,
0x62,0x34,0x0c,0x40])
s2 = np.array([0x1a,0xea,0x88,0xfb,
0xaf,0xb0,0x35,0x0b,
0x66,0xb6,0x2e,0xaa,
0x62,0x34,0x0c,0x40])
s1xs2=[0]*16
def print_states(s1,s2):
print("State 1")
print(tabulate(s1.reshape(4,4),tablefmt='fancy_grid'))
print("\n")
print("State 2")
print(tabulate(s2.reshape(4,4),tablefmt='fancy_grid'))
print("\n")
def print_matrix_xor(s1xs2,s1,s2):
for i in range(16):
s1xs2=s1^s2
print(tabulate(s1xs2.reshape(4,4),tablefmt='fancy_grid'))
print("\n")
print_states(s1,s2)
print("Matrix after Xoring the states:")
print_matrix_xor(s1xs2,s1,s2)
print("Round 1 of AES Starts")
print("\n")
master_key=np.array(['0x83','0x52', '0xed', '0x2f',
'0x83' ,'0x20', '0x83', '0x83',
'0x52' ,'0x04', '0xed', '0xb7',
'0x04' ,'0x20', '0x83', '0x83'])
print("Master key")
print((tabulate(master_key.reshape(4,4),tablefmt='fancy_grid')))
print("\n")
#Xoring the states with the master key
def key_xor(key,s1,s2):
for i in range(16):
key[i]=int(key[i],16)
s1[i]=s1[i]^(int(master_key[i]))
s2[i]=s2[i]^(int(master_key[i]))
key_xor(master_key,s1,s2)
print("States after Xoring with Master Key")
print_states(s1,s2)
print("Matrix after Xoring the states with Master Key:")
print_matrix_xor(s1xs2,s1,s2)
#Applying Confusion: Substitute Bytes
def subByte(s1,s2):
for i in range(16):
s1[i]=sbox[s1[i]]
s2[i]=sbox[s2[i]]
subByte(s1,s2)
print("States after SubBytes Operation:")
print_states(s1,s2)
print("Matrix after Xoring the states after SubBytes Operation:")
print_matrix_xor(s1xs2,s1,s2)
#Applying Diffusion, Part1:Shift Rows
def shiftRow(s1,s2):
for i in range(1,4):
(s1.reshape(4,4))[i]=np.roll((s1.reshape(4,4))[i], -i)
(s2.reshape(4,4))[i]=np.roll((s2.reshape(4,4))[i], -i)
shiftRow(s1,s2)
print("States after ShiftRows Operation:")
print_states(s1,s2)
print("Matrix after Xoring the states after ShiftRows Operation:")
print_matrix_xor(s1xs2,s1,s2)
#Applying Diffusion, Part2: Mix Columns
# Reference: http://anh.cs.luc.edu/331/code/aes.py , https://gist.github.com/raullenchai/2920069 , https://en.wikipedia.org/wiki/Rijndael_MixColumns
# Each column is used as a polynomial. It is then multiplied with 3x^3 + x^2 + x + 2 then their resultant is taken modulo with x^4 + 1. After this, it simplifies to a simple matrix multiplication.
# Galois Multiplication
def galoisMult(a, b):
p = 0
hiBitSet = 0
for i in range(8):
if b & 1 == 1:
p ^= a
hiBitSet = a & 0x80
a <<= 1
if hiBitSet == 0x80:
a ^= 0x1b
b >>= 1
return p % 256
# galois multiplication of 1 column of the 4x4 matrix
def mixColumn(column):
temp = copy(column)
column[0] = galoisMult(temp[0],2) ^ galoisMult(temp[3],1) ^ \
galoisMult(temp[2],1) ^ galoisMult(temp[1],3)
column[1] = galoisMult(temp[1],2) ^ galoisMult(temp[0],1) ^ \
galoisMult(temp[3],1) ^ galoisMult(temp[2],3)
column[2] = galoisMult(temp[2],2) ^ galoisMult(temp[1],1) ^ \
galoisMult(temp[0],1) ^ galoisMult(temp[3],3)
column[3] = galoisMult(temp[3],2) ^ galoisMult(temp[2],1) ^ \
galoisMult(temp[1],1) ^ galoisMult(temp[0],3)
# mixColumns is a wrapper for mixColumn - generates a "virtual" column from the state table and applies the galois math
def mixColumns(state):
for i in range(4):
column = []
# create the column by taking the same item out of each "virtual" row
for j in range(4):
column.append(state[j*4+i])
# apply mixColumn on our virtual column
mixColumn(column)
# transfer the new values back into the state table
for j in range(4):
state[j*4+i] = column[j]
mixColumns(s1)
mixColumns(s2)
print("States after MixColumns Operation:")
print_states(s1,s2)
print("Matrix after Xoring the states after MixColumns Operation:")
print_matrix_xor(s1xs2,s1,s2)
#Round Key 1
k0=np.array([['0x6e', '0x3c', '0xd1', '0xfe'],
['0x2a' ,'0x0a', '0x89', '0x0a'],
['0xbe', '0xba', '0x57', '0xe0'],
['0x11', '0x31', '0xb2', '0x31']])
k0=k0.reshape(16,)
print("Round Key 1")
print(tabulate(k0.reshape(4,4),tablefmt='fancy_grid'))
print("\n")
#Key XOR with Round key 1
key_xor(k0,s1,s2)
print("States after Xoring with Round Key 1")
print_states(s1,s2)
print("Matrix after Xoring the states with Round Key 1:")
print_matrix_xor(s1xs2,s1,s2)
print("Round 1 of AES Complete")
print("\n")
print("Round 2 Starts")
print("\n")
subByte(s1,s2)
print("States after SubBytes Operation:")
print_states(s1,s2)
print("Matrix after Xoring the states after SubBytes Operation:")
print_matrix_xor(s1xs2,s1,s2)
shiftRow(s1,s2)
print("States after ShiftRows Operation:")
print_states(s1,s2)
print("Matrix after Xoring the states after ShiftRows Operation:")
print_matrix_xor(s1xs2,s1,s2)
mixColumns(s1)
mixColumns(s2)
print("States after MixColumns Operation:")
print_states(s1,s2)
print("Matrix after Xoring the states after MixColumns Operation:")
print_matrix_xor(s1xs2,s1,s2)
#Round Key for round 2
k1=np.array([['0x0b', '0x37', '0xe6', '0x18'],
['0xcb' ,'0xc1', '0x48', '0x42'],
['0x79', '0xc3', '0x94', '0x74'],
['0xaa' ,'0x9b', '0x29' ,'0x18']])
k1=k1.reshape(16,)
print("Round Key 2")
print(tabulate(k1.reshape(4,4),tablefmt='fancy_grid'))
print("\n")
#Key XOR with Round key 1
key_xor(k1,s1,s2)
print("States after Xoring with Round Key 2")
print_states(s1,s2)
print("Matrix after Xoring the states with Round Key 2:")
print_matrix_xor(s1xs2,s1,s2)
print("Round 2 of AES Complete")
print("\n")