-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
95 lines (74 loc) · 2.84 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import glob, os, cv2
import util
import config
class Dataset(object):
def __init__(self, args):
self.index_in_epoch = 0
self.examples = np.array(glob.glob(args.dataset_path))
self.num_examples = len(self.examples)
np.random.shuffle(self.examples)
def next_batch(self, batch_size):
start = self.index_in_epoch
self.index_in_epoch += batch_size
if self.index_in_epoch > self.num_examples:
np.random.shuffle(self.examples)
start = 0
self.index_in_epoch = batch_size
assert batch_size <= self.num_examples
end = self.index_in_epoch
return self.read_data(start, end)
def read_voxel(self, filename):
voxel = util.read_binvox(filename)
return voxel
def read_style(self, filename):
style = np.load(filename)
return style
def read_image1(self, filename):
image = cv2.imread(filename, 0).astype(np.float32) / 127.5 - 1
image = np.expand_dims(image, -1)
return image
def read_image2(self, filename):
image = cv2.imread(filename, 1).astype(np.float32) / 127.5 - 1
return image
class Stage1(Dataset):
def __init__(self, args):
super(Stage1, self).__init__(args)
def read_data(self, start, end):
voxels = []
images = []
labels = []
for binvox_path in self.examples[start:end]:
head, tail = os.path.split(binvox_path)
image_path = os.path.join(head, 'model_edge_{0}.png'.format(np.random.randint(5)))
label_path = os.path.join(head, '../label.npy')
voxel = self.read_voxel(binvox_path)
image = self.read_image1(image_path)
label = np.load(label_path)
voxels.append(voxel)
images.append(image)
labels.append(label)
return voxels, images, labels
class Stage2(Dataset):
def __init__(self, args):
super(Stage2, self).__init__(args)
def read_data(self, start, end):
styles = []
images1 = []
images2 = []
labels = []
for style_path in self.examples[start:end]:
head, tail = os.path.split(style_path)
index = np.random.randint(5)
image1_path = os.path.join(head, 'model_edge_{0}.png'.format(index))
image2_path = os.path.join(head, 'model_color_{0}.png'.format(index))
label_path = os.path.join(head, '../label.npy')
style = self.read_style(style_path)
image1 = self.read_image1(image1_path)
image2 = self.read_image2(image2_path)
label = np.load(label_path)
styles.append(style)
images1.append(image1)
images2.append(image2)
labels.append(label)
return styles, images1, images2, labels