-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimpsonrule_nlb.r
104 lines (98 loc) · 3.61 KB
/
simpsonrule_nlb.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
################################################################################
# Simpson rule for normal, log, and brob
simpsonrule.nlb <- function(fx,
lower, upper,
method="normal", # log, brob
eps=.Machine$double.xmin,
#eps=.Machine$double.eps,
log1p.crit=1e-09, # 1e-15
Nsteps=100,
parallel=FALSE,
fixINF=TRUE, ...)
{
if(lower == upper)
{
cat("\nLower and upper limits of the integral are identical.\nNo calculations done.\n")
return(0)
} else if(lower > upper)
{
cat("\nBe aware of the limits chosen:\tlower > upper\n.Negative value of the integral will result.\n")
return( -1 * simpsonrule.nlb(fx,
upper, lower,
method=method,
eps=eps,
log1p.crit=log1p.crit,
Nsteps=Nsteps,
parallel=parallel,
fixINF=fixINF) )
}
sek.l <- 2*Nsteps+1
hml.s <- sign(upper-lower)
# avoid infinite values (zero with log(0), etc.)
if(fixINF == TRUE)
{
if(method %in% c("normal","log"))
{
if(is.infinite(fx(lower))) lower <- lower + eps * hml.s
if(is.infinite(fx(upper))) upper <- upper - eps * hml.s
} else if(method == "brob")
{
if(is.infinite(fx(lower)@x)) lower <- lower + eps * hml.s
if(is.infinite(fx(upper)@x)) upper <- upper - eps * hml.s
}
}
sek <- seq(lower,upper,length=sek.l)
if(method == "normal")
{
xfxap <- fx(sek)
h <- xfxap[2] - xfxap[1]
res <- sum(h*( xfxap[2 * (1:Nsteps) - 1] +
4*xfxap[2 * (1:Nsteps)] +
xfxap[2 * (1:Nsteps) + 1] )
/3)
} else if(method == "log")
{
if(parallel)
{
require(parallel)
mccores <- detectCores(all.tests=FALSE, logical=TRUE)
fx.log <- simplify2array(mclapply(seq_along(1:sek.l),
function(i) fx(sek[i]),
mc.cores=mccores
) )
} else
{
fx.log <- Vectorize(fx)(sek)
}
h.log <- log(sek[2] - sek[1])
s.log <- c( fx.log[2 * (1:Nsteps) - 1],
log(4) + fx.log[2 * (1:Nsteps)],
fx.log[2 * (1:Nsteps) + 1]
)
max.s.log <- max(s.log)
sum.log <- sum(exp(s.log - max.s.log))
#res <- h.log - log(3) + max.s.log + log1p(sum(exp(s.log[-which.max(s.log)] - max.s.log)))
#
# when do log1p(x) vs. log(x)
# https://scicomp.stackexchange.com/questions/20629/when-should-log1p-and-expm1-be-used
# IF 1+x=1 in floating point accuracy
# in case of x = 1e-15 which is -34.53878 on log scale
# ie. usual double precision arithmetic
# if is already useful for
# x = 1e−09 which is -20.72327 on log scale
ifelse(sum.log < log1p.crit,
res <- h.log - log(3) + max.s.log + log1p(sum.log),
res <- h.log - log(3) + max.s.log + log(sum.log)
)
} else if(method=="brob")
{
fx.brob <- list2vec.brob(lapply(seq_along(1:sek.l), function(i) fx(sek[i])))
h <- as.brob(sek[2] - sek[1]) # diff
res <- sum(h/as.brob(3) * ( fx.brob[2 * (1:Nsteps) - 1] +
4 * fx.brob[2 * (1:Nsteps)] +
fx.brob[2 * (1:Nsteps) + 1]
) )
}
return(res)
}
################################################################################