-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert.py
224 lines (178 loc) · 7.63 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
from torch import nn
class BertEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
)
self.position_embeddings = nn.Embedding(
config.sequence_length, config.hidden_size
)
self.token_type_embeddings = nn.Embedding(config.segments, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, config.norm_eps)
self.dropout = nn.Dropout(config.dropout)
def forward(self, token_ids, token_type_ids, position_ids=None):
if position_ids is None:
position_ids = torch.arange(token_ids.size(1)).expand((1, -1))
embeddings = (
self.word_embeddings(token_ids)
+ self.token_type_embeddings(token_type_ids)
+ self.position_embeddings(position_ids)
)
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class SelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.attention_heads = config.attention_heads
self.head_dim = self.hidden_size // self.attention_heads
self.query = nn.Linear(self.hidden_size, self.hidden_size)
self.key = nn.Linear(self.hidden_size, self.hidden_size)
self.value = nn.Linear(self.hidden_size, self.hidden_size)
def transpose_for_scores(self, x):
batch_size = x.size(0)
return x.view(batch_size, -1, self.attention_heads, self.head_dim).transpose(
1, 2
)
def forward(self, inputs, mask=None):
q, k, v = inputs, inputs, inputs
batch_size = q.size(0)
q = self.transpose_for_scores(self.query(q))
k = self.transpose_for_scores(self.key(k))
v = self.transpose_for_scores(self.value(v))
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(
torch.tensor(self.head_dim, dtype=torch.float)
)
if mask is not None:
mask = mask[:, None, None, :]
scores = scores.masked_fill(mask == 0, float("-inf"))
attention = nn.functional.softmax(scores, dim=-1)
context = torch.matmul(attention, v)
context = (
context.transpose(1, 2).contiguous().view(batch_size, -1, self.hidden_size)
)
return context
class AttentionOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, config.norm_eps)
self.dropout = nn.Dropout(config.dropout)
def forward(self, inputs, context):
outputs = self.dense(context)
outputs = self.dropout(outputs)
outputs = self.LayerNorm(outputs + inputs)
return outputs
class AttentionBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.self = SelfAttention(config)
self.output = AttentionOutput(config)
def forward(self, inputs, mask):
context = self.self(inputs, mask)
outputs = self.output(inputs, context)
return outputs
class Intermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
def forward(self, inputs):
outputs = self.dense(inputs)
outputs = nn.functional.gelu(outputs)
return outputs
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, config.norm_eps)
self.dropout = nn.Dropout(config.dropout)
def forward(self, intermediate_output, attention_output):
outputs = self.dense(intermediate_output)
outputs = self.dropout(outputs)
outputs = self.LayerNorm(outputs + attention_output)
return outputs
class BertEncoder(nn.Module):
def __init__(self, config):
super(BertEncoder, self).__init__()
self.attention = AttentionBlock(config)
self.intermediate = Intermediate(config)
self.output = BertOutput(config)
def forward(self, inputs, mask):
attention_output = self.attention(inputs, mask)
intermediate_output = self.intermediate(attention_output)
output = self.output(intermediate_output, attention_output)
return output
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, inputs):
first_token_tensor = inputs[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class Bert(nn.Module):
def __init__(self, config):
super(Bert, self).__init__()
self.embeddings = BertEmbedding(config)
self.encoder = nn.ModuleDict(
[
[
f"layer_{str(i)}",
BertEncoder(config),
]
for i in range(config.layers)
]
)
self.pooler = BertPooler(config)
def forward(self, tokens, segments, attention_mask):
encoded_tokens = self.embeddings(tokens, segments)
for _, encoder_block in self.encoder.items():
encoded_tokens = encoder_block(encoded_tokens, attention_mask)
pooled_output = self.pooler(encoded_tokens)
return encoded_tokens, pooled_output
class BertTransformHead(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, config.norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = nn.functional.gelu(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertTransformHead(config)
self.dense = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.output_bias = nn.Parameter(torch.zeros(config.vocab_size))
self.dense.bias = self.output_bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.dense(hidden_states)
return hidden_states
class CLS(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, config.classes)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class BertForPreTraining(nn.Module):
def __init__(self, config):
super().__init__()
self.bert = Bert(config)
self.cls = CLS(config)
def forward(self, tokens, segments, attention_mask):
sequence_output, pooled_output = self.bert(tokens, segments, attention_mask)
prediction_scores, seq_relationship_score = self.cls(
sequence_output, pooled_output
)
return sequence_output, pooled_output, prediction_scores, seq_relationship_score