forked from weidai11/cryptopp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cham.cpp
391 lines (353 loc) · 16.2 KB
/
cham.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// cham.cpp - written and placed in the public domain by Kim Sung Hee and Jeffrey Walton
// Based on "CHAM: A Family of Lightweight Block Ciphers for
// Resource-Constrained Devices" by Bonwook Koo, Dongyoung Roh,
// Hyeonjin Kim, Younghoon Jung, Dong-Geon Lee, and Daesung Kwon
#include "pch.h"
#include "config.h"
#include "cham.h"
#include "misc.h"
#include "cpu.h"
// CHAM table of parameters
// +-------------------------------------------------
// +cipher n k r w k/w
// +-------------------------------------------------
// +CHAM-64/128 64 128 80 16 8
// +CHAM-128/128 128 128 80 32 4
// +CHAM-128/256 128 256 96 32 8
// +-------------------------------------------------
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::rotlConstant;
using CryptoPP::rotrConstant;
/// \brief CHAM encryption round
/// \tparam RR the round number residue
/// \tparam KW the number of key words
/// \tparam T words type
/// \param x the state array
/// \param k the subkey table
/// \param i the round number
/// \details CHAM_EncRound applies the encryption round to the plain text.
/// RR is the "round residue" and it is used modulo 4. ProcessAndXorBlock
/// may provide a fully unrolled encryption transformation, or provide
/// a transformation that loops using multiples of 4 encryption rounds.
/// \details CHAM_EncRound calculates indexes into the x[] array based
/// on the round number residue. There is no need for the assignments
/// that shift values in preparations for the next round.
/// \details CHAM_EncRound depends on the round number. The actual round
/// being executed is passed through the parameter <tt>i</tt>. If
/// ProcessAndXorBlock fully unrolled the loop then the parameter
/// <tt>i</tt> would be unnecessary.
template <unsigned int RR, unsigned int KW, class T>
inline void CHAM_EncRound(T x[4], const T k[KW], unsigned int i)
{
CRYPTOPP_CONSTANT(IDX0 = (RR+0) % 4)
CRYPTOPP_CONSTANT(IDX1 = (RR+1) % 4)
CRYPTOPP_CONSTANT(IDX3 = (RR+3+1) % 4)
CRYPTOPP_CONSTANT(R1 = (RR % 2 == 0) ? 1 : 8)
CRYPTOPP_CONSTANT(R2 = (RR % 2 == 0) ? 8 : 1)
// Follows conventions in the ref impl
const T kk = k[i % KW];
const T aa = x[IDX0] ^ static_cast<T>(i);
const T bb = rotlConstant<R1>(x[IDX1]) ^ kk;
x[IDX3] = rotlConstant<R2>(static_cast<T>(aa + bb));
}
/// \brief CHAM decryption round
/// \tparam RR the round number residue
/// \tparam KW the number of key words
/// \tparam T words type
/// \param x the state array
/// \param k the subkey table
/// \param i the round number
/// \details CHAM_DecRound applies the decryption round to the cipher text.
/// RR is the "round residue" and it is used modulo 4. ProcessAndXorBlock
/// may provide a fully unrolled decryption transformation, or provide
/// a transformation that loops using multiples of 4 decryption rounds.
/// \details CHAM_DecRound calculates indexes into the x[] array based
/// on the round number residue. There is no need for the assignments
/// that shift values in preparations for the next round.
/// \details CHAM_DecRound depends on the round number. The actual round
/// being executed is passed through the parameter <tt>i</tt>. If
/// ProcessAndXorBlock fully unrolled the loop then the parameter
/// <tt>i</tt> would be unnecessary.
template <unsigned int RR, unsigned int KW, class T>
inline void CHAM_DecRound(T x[4], const T k[KW], unsigned int i)
{
CRYPTOPP_CONSTANT(IDX0 = (RR+0) % 4)
CRYPTOPP_CONSTANT(IDX1 = (RR+1) % 4)
CRYPTOPP_CONSTANT(IDX3 = (RR+3+1) % 4)
CRYPTOPP_CONSTANT(R1 = (RR % 2 == 0) ? 8 : 1)
CRYPTOPP_CONSTANT(R2 = (RR % 2 == 0) ? 1 : 8)
// Follows conventions in the ref impl
const T kk = k[i % KW];
const T aa = rotrConstant<R1>(x[IDX3]);
const T bb = rotlConstant<R2>(x[IDX1]) ^ kk;
x[IDX0] = static_cast<T>(aa - bb) ^ static_cast<T>(i);
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
#if CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
# if (CRYPTOPP_SSSE3_AVAILABLE)
extern size_t CHAM64_Enc_AdvancedProcessBlocks_SSSE3(const word16* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t CHAM64_Dec_AdvancedProcessBlocks_SSSE3(const word16* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t CHAM128_Enc_AdvancedProcessBlocks_SSSE3(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t CHAM128_Dec_AdvancedProcessBlocks_SSSE3(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
# endif // CRYPTOPP_SSSE3_AVAILABLE
#endif // CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
std::string CHAM64::Base::AlgorithmProvider() const
{
#if (CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS)
# if defined(CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return "SSSE3";
# endif
#endif
return "C++";
}
void CHAM64::Base::UncheckedSetKey(const byte *userKey, unsigned int keyLength, const NameValuePairs ¶ms)
{
CRYPTOPP_UNUSED(params);
m_kw = keyLength/sizeof(word16);
m_rk.New(2*m_kw);
for (size_t i = 0; i < m_kw; ++i, userKey += sizeof(word16))
{
// Do not cast the buffer. It will SIGBUS on some ARM and SPARC.
const word16 rk = GetWord<word16>(false, BIG_ENDIAN_ORDER, userKey);
m_rk[i] = rk ^ rotlConstant<1>(rk) ^ rotlConstant<8>(rk);
m_rk[(i + m_kw) ^ 1] = rk ^ rotlConstant<1>(rk) ^ rotlConstant<11>(rk);
}
}
void CHAM64::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do not cast the buffer. It will SIGBUS on some ARM and SPARC.
GetBlock<word16, BigEndian> iblock(inBlock);
iblock(m_x[0])(m_x[1])(m_x[2])(m_x[3]);
const int R = 80;
for (int i = 0; i < R; i+=16)
{
CHAM_EncRound< 0, 16>(m_x.begin(), m_rk.begin(), i+0);
CHAM_EncRound< 1, 16>(m_x.begin(), m_rk.begin(), i+1);
CHAM_EncRound< 2, 16>(m_x.begin(), m_rk.begin(), i+2);
CHAM_EncRound< 3, 16>(m_x.begin(), m_rk.begin(), i+3);
CHAM_EncRound< 4, 16>(m_x.begin(), m_rk.begin(), i+4);
CHAM_EncRound< 5, 16>(m_x.begin(), m_rk.begin(), i+5);
CHAM_EncRound< 6, 16>(m_x.begin(), m_rk.begin(), i+6);
CHAM_EncRound< 7, 16>(m_x.begin(), m_rk.begin(), i+7);
CHAM_EncRound< 8, 16>(m_x.begin(), m_rk.begin(), i+8);
CHAM_EncRound< 9, 16>(m_x.begin(), m_rk.begin(), i+9);
CHAM_EncRound<10, 16>(m_x.begin(), m_rk.begin(), i+10);
CHAM_EncRound<11, 16>(m_x.begin(), m_rk.begin(), i+11);
CHAM_EncRound<12, 16>(m_x.begin(), m_rk.begin(), i+12);
CHAM_EncRound<13, 16>(m_x.begin(), m_rk.begin(), i+13);
CHAM_EncRound<14, 16>(m_x.begin(), m_rk.begin(), i+14);
CHAM_EncRound<15, 16>(m_x.begin(), m_rk.begin(), i+15);
}
PutBlock<word16, BigEndian> oblock(xorBlock, outBlock);
oblock(m_x[0])(m_x[1])(m_x[2])(m_x[3]);
}
void CHAM64::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do not cast the buffer. It will SIGBUS on some ARM and SPARC.
GetBlock<word16, BigEndian> iblock(inBlock);
iblock(m_x[0])(m_x[1])(m_x[2])(m_x[3]);
const int R = 80;
for (int i = R-1; i >=0 ; i-=16)
{
CHAM_DecRound<15, 16>(m_x.begin(), m_rk.begin(), i-0);
CHAM_DecRound<14, 16>(m_x.begin(), m_rk.begin(), i-1);
CHAM_DecRound<13, 16>(m_x.begin(), m_rk.begin(), i-2);
CHAM_DecRound<12, 16>(m_x.begin(), m_rk.begin(), i-3);
CHAM_DecRound<11, 16>(m_x.begin(), m_rk.begin(), i-4);
CHAM_DecRound<10, 16>(m_x.begin(), m_rk.begin(), i-5);
CHAM_DecRound< 9, 16>(m_x.begin(), m_rk.begin(), i-6);
CHAM_DecRound< 8, 16>(m_x.begin(), m_rk.begin(), i-7);
CHAM_DecRound< 7, 16>(m_x.begin(), m_rk.begin(), i-8);
CHAM_DecRound< 6, 16>(m_x.begin(), m_rk.begin(), i-9);
CHAM_DecRound< 5, 16>(m_x.begin(), m_rk.begin(), i-10);
CHAM_DecRound< 4, 16>(m_x.begin(), m_rk.begin(), i-11);
CHAM_DecRound< 3, 16>(m_x.begin(), m_rk.begin(), i-12);
CHAM_DecRound< 2, 16>(m_x.begin(), m_rk.begin(), i-13);
CHAM_DecRound< 1, 16>(m_x.begin(), m_rk.begin(), i-14);
CHAM_DecRound< 0, 16>(m_x.begin(), m_rk.begin(), i-15);
}
PutBlock<word16, BigEndian> oblock(xorBlock, outBlock);
oblock(m_x[0])(m_x[1])(m_x[2])(m_x[3]);
}
std::string CHAM128::Base::AlgorithmProvider() const
{
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return "SSSE3";
#endif
return "C++";
}
void CHAM128::Base::UncheckedSetKey(const byte *userKey, unsigned int keyLength, const NameValuePairs ¶ms)
{
CRYPTOPP_UNUSED(params);
m_kw = keyLength/sizeof(word32);
m_rk.New(2*m_kw);
for (size_t i = 0; i < m_kw; ++i, userKey += sizeof(word32))
{
// Do not cast the buffer. It will SIGBUS on some ARM and SPARC.
const word32 rk = GetWord<word32>(false, BIG_ENDIAN_ORDER, userKey);
m_rk[i] = rk ^ rotlConstant<1>(rk) ^ rotlConstant<8>(rk);
m_rk[(i + m_kw) ^ 1] = rk ^ rotlConstant<1>(rk) ^ rotlConstant<11>(rk);
}
}
void CHAM128::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do not cast the buffer. It will SIGBUS on some ARM and SPARC.
GetBlock<word32, BigEndian> iblock(inBlock);
iblock(m_x[0])(m_x[1])(m_x[2])(m_x[3]);
switch (m_kw)
{
case 4: // 128-bit key
{
const int R = 80;
for (int i = 0; i < R; i+=8)
{
CHAM_EncRound<0, 8>(m_x.begin(), m_rk.begin(), i+0);
CHAM_EncRound<1, 8>(m_x.begin(), m_rk.begin(), i+1);
CHAM_EncRound<2, 8>(m_x.begin(), m_rk.begin(), i+2);
CHAM_EncRound<3, 8>(m_x.begin(), m_rk.begin(), i+3);
CHAM_EncRound<4, 8>(m_x.begin(), m_rk.begin(), i+4);
CHAM_EncRound<5, 8>(m_x.begin(), m_rk.begin(), i+5);
CHAM_EncRound<6, 8>(m_x.begin(), m_rk.begin(), i+6);
CHAM_EncRound<7, 8>(m_x.begin(), m_rk.begin(), i+7);
}
break;
}
case 8: // 256-bit key
{
const int R = 96;
for (int i = 0; i < R; i+=16)
{
CHAM_EncRound< 0, 16>(m_x.begin(), m_rk.begin(), i+0);
CHAM_EncRound< 1, 16>(m_x.begin(), m_rk.begin(), i+1);
CHAM_EncRound< 2, 16>(m_x.begin(), m_rk.begin(), i+2);
CHAM_EncRound< 3, 16>(m_x.begin(), m_rk.begin(), i+3);
CHAM_EncRound< 4, 16>(m_x.begin(), m_rk.begin(), i+4);
CHAM_EncRound< 5, 16>(m_x.begin(), m_rk.begin(), i+5);
CHAM_EncRound< 6, 16>(m_x.begin(), m_rk.begin(), i+6);
CHAM_EncRound< 7, 16>(m_x.begin(), m_rk.begin(), i+7);
CHAM_EncRound< 8, 16>(m_x.begin(), m_rk.begin(), i+8);
CHAM_EncRound< 9, 16>(m_x.begin(), m_rk.begin(), i+9);
CHAM_EncRound<10, 16>(m_x.begin(), m_rk.begin(), i+10);
CHAM_EncRound<11, 16>(m_x.begin(), m_rk.begin(), i+11);
CHAM_EncRound<12, 16>(m_x.begin(), m_rk.begin(), i+12);
CHAM_EncRound<13, 16>(m_x.begin(), m_rk.begin(), i+13);
CHAM_EncRound<14, 16>(m_x.begin(), m_rk.begin(), i+14);
CHAM_EncRound<15, 16>(m_x.begin(), m_rk.begin(), i+15);
}
break;
}
default:
CRYPTOPP_ASSERT(0);;
}
PutBlock<word32, BigEndian> oblock(xorBlock, outBlock);
oblock(m_x[0])(m_x[1])(m_x[2])(m_x[3]);
}
void CHAM128::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do not cast the buffer. It will SIGBUS on some ARM and SPARC.
GetBlock<word32, BigEndian> iblock(inBlock);
iblock(m_x[0])(m_x[1])(m_x[2])(m_x[3]);
switch (m_kw)
{
case 4: // 128-bit key
{
const int R = 80;
for (int i = R-1; i >= 0; i-=8)
{
CHAM_DecRound<7, 8>(m_x.begin(), m_rk.begin(), i-0);
CHAM_DecRound<6, 8>(m_x.begin(), m_rk.begin(), i-1);
CHAM_DecRound<5, 8>(m_x.begin(), m_rk.begin(), i-2);
CHAM_DecRound<4, 8>(m_x.begin(), m_rk.begin(), i-3);
CHAM_DecRound<3, 8>(m_x.begin(), m_rk.begin(), i-4);
CHAM_DecRound<2, 8>(m_x.begin(), m_rk.begin(), i-5);
CHAM_DecRound<1, 8>(m_x.begin(), m_rk.begin(), i-6);
CHAM_DecRound<0, 8>(m_x.begin(), m_rk.begin(), i-7);
}
break;
}
case 8: // 256-bit key
{
const int R = 96;
for (int i = R-1; i >= 0; i-=16)
{
CHAM_DecRound<15, 16>(m_x.begin(), m_rk.begin(), i-0);
CHAM_DecRound<14, 16>(m_x.begin(), m_rk.begin(), i-1);
CHAM_DecRound<13, 16>(m_x.begin(), m_rk.begin(), i-2);
CHAM_DecRound<12, 16>(m_x.begin(), m_rk.begin(), i-3);
CHAM_DecRound<11, 16>(m_x.begin(), m_rk.begin(), i-4);
CHAM_DecRound<10, 16>(m_x.begin(), m_rk.begin(), i-5);
CHAM_DecRound< 9, 16>(m_x.begin(), m_rk.begin(), i-6);
CHAM_DecRound< 8, 16>(m_x.begin(), m_rk.begin(), i-7);
CHAM_DecRound< 7, 16>(m_x.begin(), m_rk.begin(), i-8);
CHAM_DecRound< 6, 16>(m_x.begin(), m_rk.begin(), i-9);
CHAM_DecRound< 5, 16>(m_x.begin(), m_rk.begin(), i-10);
CHAM_DecRound< 4, 16>(m_x.begin(), m_rk.begin(), i-11);
CHAM_DecRound< 3, 16>(m_x.begin(), m_rk.begin(), i-12);
CHAM_DecRound< 2, 16>(m_x.begin(), m_rk.begin(), i-13);
CHAM_DecRound< 1, 16>(m_x.begin(), m_rk.begin(), i-14);
CHAM_DecRound< 0, 16>(m_x.begin(), m_rk.begin(), i-15);
}
break;
}
default:
CRYPTOPP_ASSERT(0);;
}
PutBlock<word32, BigEndian> oblock(xorBlock, outBlock);
oblock(m_x[0])(m_x[1])(m_x[2])(m_x[3]);
}
#if CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
size_t CHAM64::Enc::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
# if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3()) {
return CHAM64_Enc_AdvancedProcessBlocks_SSSE3(m_rk, 80,
inBlocks, xorBlocks, outBlocks, length, flags);
}
# endif // CRYPTOPP_SSSE3_AVAILABLE
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t CHAM64::Dec::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
# if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3()) {
return CHAM64_Dec_AdvancedProcessBlocks_SSSE3(m_rk, 80,
inBlocks, xorBlocks, outBlocks, length, flags);
}
# endif // CRYPTOPP_SSSE3_AVAILABLE
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t CHAM128::Enc::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
# if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3()) {
const size_t rounds = (m_kw == 4 ? 80 : 96);
return CHAM128_Enc_AdvancedProcessBlocks_SSSE3(m_rk, rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
}
# endif // CRYPTOPP_SSSE3_AVAILABLE
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t CHAM128::Dec::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
# if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3()) {
const size_t rounds = (m_kw == 4 ? 80 : 96);
return CHAM128_Dec_AdvancedProcessBlocks_SSSE3(m_rk, rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
}
# endif // CRYPTOPP_SSSE3_AVAILABLE
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
NAMESPACE_END