Skip to content

abhigoku10/Yolact_minimal

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Yolact_minimal

Minimal PyTorch implementation of Yolact:《YOLACT: Real-time Instance Segmentation》.
The original project is here.

This implementation simplified the original code, preserved the main function and made the network easy to understand.

Following instruction is based on resnet-101.

The network structure.

Example 0

Environments

PyTorch 1.1.
Python 3.6 or above.
Other common packages.

Prepare

Train

# Trains using the base config with a batch size of 8 (the default).
python train.py --config=yolact_base_config

# Resume training (just pass the .pth file to the model by using --resume).
python train.py --config=yolact_base_config --resume weights/yolact_base_2_35000.pth

# Using --batch_size, --lr, --momentum, --decay to set the batch size, learning rate, momentum and weight decay.
python train.py --config=yolact_base_config --batch_size=4

Val

# Evaluate on COCO val2017.
python eval.py --trained_model=weights/yolact_base_54_800000.pth

The results should be: Example 1

# Create a json file and then use the COCO API to evaluate the result.
python eval.py --config=yolact_base_config --cocoapi
# Then,
python coco_eval.py

# Benchmark
python eval.py --trained_model=weights/yolact_base_54_800000.pth --benchmark --max_images=1000

Detect

Example 2

# Detect images, pass the path of your image directory to --image.
python detect.py --trained_model=weights/yolact_base_54_800000.pth --image images
# Detect a video, pass the path of your video to --video.
python detect.py --trained_model=weights/yolact_base_54_800000.pth --video video/1.mp4
# Use --hide_mask, --hide_score, --show_lincomb and so on to get different results.
python detect.py --trained_model=weights/yolact_base_54_800000.pth --image images --hide_mask

About

Minimal PyTorch implementation of YOLACT.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%