description |
---|
This guide shows you how to ingest a stream of records from an Apache Kafka topic into a Pinot table. |
In this guide, you'll learn how to import data into Pinot using Apache Kafka for real-time stream ingestion. Pinot has out-of-the-box real-time ingestion support for Kafka.
Let's setup a demo Kafka cluster locally, and create a sample topic transcript-topic
{% tabs %} {% tab title="Docker" %} Start Kafka
docker run \
--network pinot-demo --name=kafka \
-e KAFKA_ZOOKEEPER_CONNECT=pinot-quickstart:2123/kafka \
-e KAFKA_BROKER_ID=0 \
-e KAFKA_ADVERTISED_HOST_NAME=kafka \
-d wurstmeister/kafka:latest
Create a Kafka Topic
docker exec \
-t kafka \
/opt/kafka/bin/kafka-topics.sh \
--zookeeper pinot-quickstart:2123/kafka \
--partitions=1 --replication-factor=1 \
--create --topic transcript-topic
{% endtab %}
{% tab title="Using launcher scripts" %} Start Kafka
Start Kafka cluster on port 9876
using the same Zookeeper from the quick-start examples.
bin/pinot-admin.sh StartKafka -zkAddress=localhost:2123/kafka -port 9876
Create a Kafka topic
Download the latest Kafka. Create a topic.
bin/kafka-topics.sh --create --bootstrap-server localhost:9876 --replication-factor 1 --partitions 1 --topic transcript-topic
{% endtab %} {% endtabs %}
We will publish the data in the same format as mentioned in the Stream ingestion docs. So you can use the same schema mentioned under Create Schema Configuration.
The real-time table configuration for the transcript
table described in the schema from the previous step.
For Kafka, we use streamType as kafka
. Currently only JSON format is supported but you can easily write your own decoder by extending the StreamMessageDecoder
interface. You can then access your decoder class by putting the jar file in plugins
directory
The lowLevel
consumer reads data per partition whereas the highLevel
consumer utilises Kafka high level consumer to read data from the whole stream. It doesn't have the control over which partition to read at a particular momemt.
For Kafka versions below 2.X, use org.apache.pinot.plugin.stream.kafka09.KafkaConsumerFactory
For Kafka version 2.X and above, use
org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory
You can set the offset to -
smallest
to start consumer from the earliest offsetlargest
to start consumer from the latest offsettimestamp in format yyyy-MM-dd'T'HH:mm:ss.SSSZ
to start the consumer from the offset after the timestamp.datetime duration or period
to start the consumer from the offset after the period eg., '2d'.
The resulting configuration should look as follows -
{% code title="/tmp/pinot-quick-start/transcript-table-realtime.json" %}
{
"tableName": "transcript",
"tableType": "REALTIME",
"segmentsConfig": {
"timeColumnName": "timestamp",
"timeType": "MILLISECONDS",
"schemaName": "transcript",
"replicasPerPartition": "1"
},
"tenants": {},
"tableIndexConfig": {
"loadMode": "MMAP",
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "lowlevel",
"stream.kafka.topic.name": "transcript-topic",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.stream.kafka.KafkaJSONMessageDecoder",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.broker.list": "localhost:9876",
"realtime.segment.flush.threshold.time": "3600000",
"realtime.segment.flush.threshold.rows": "50000",
"stream.kafka.consumer.prop.auto.offset.reset": "smallest"
}
},
"metadata": {
"customConfigs": {}
}
}
{% endcode %}
- Update table config for both high level and low level consumer: Update config:
stream.kafka.consumer.factory.class.name
fromorg.apache.pinot.core.realtime.impl.kafka.KafkaConsumerFactory
toorg.apache.pinot.core.realtime.impl.kafka2.KafkaConsumerFactory
. - If using Stream(High) level consumer: Please also add config
stream.kafka.hlc.bootstrap.server
intotableIndexConfig.streamConfigs
. This config should be the URI of Kafka broker lists, e.g.localhost:9092
.
This connector is also suitable for Kafka lib version higher than 2.0.0
. In Kafka 2.0 connector pom.xml, change the kafka.lib.version
from 2.0.0
to 2.1.1
will make this Connector working with Kafka 2.1.1
.
The connector with Kafka lib 2.0+ supports Kafka transactions. The transaction support is controlled by config kafka.isolation.level
in Kafka stream config, which can be read_committed
or read_uncommitted
(default). Setting it to read_committed
will ingest transactionally committed messages in Kafka stream only.
Now that we have our table and schema configurations, let's upload them to the Pinot cluster. As soon as the real-time table is created, it will begin ingesting available records from the Kafka topic.
{% tabs %} {% tab title="Docker" %}
docker run \
--network=pinot-demo \
-v /tmp/pinot-quick-start:/tmp/pinot-quick-start \
--name pinot-streaming-table-creation \
apachepinot/pinot:latest AddTable \
-schemaFile /tmp/pinot-quick-start/transcript-schema.json \
-tableConfigFile /tmp/pinot-quick-start/transcript-table-realtime.json \
-controllerHost pinot-quickstart \
-controllerPort 9000 \
-exec
{% endtab %}
{% tab title="Launcher Script" %}
bin/pinot-admin.sh AddTable \
-schemaFile /tmp/pinot-quick-start/transcript-schema.json \
-tableConfigFile /tmp/pinot-quick-start/transcript-table-realtime.json \
-exec
{% endtab %} {% endtabs %}
We will publish data in the following format to Kafka. Let us save the data in a file named as transcript.json
.
{% code title="transcript.json" %}
{"studentID":205,"firstName":"Natalie","lastName":"Jones","gender":"Female","subject":"Maths","score":3.8,"timestamp":1571900400000}
{"studentID":205,"firstName":"Natalie","lastName":"Jones","gender":"Female","subject":"History","score":3.5,"timestamp":1571900400000}
{"studentID":207,"firstName":"Bob","lastName":"Lewis","gender":"Male","subject":"Maths","score":3.2,"timestamp":1571900400000}
{"studentID":207,"firstName":"Bob","lastName":"Lewis","gender":"Male","subject":"Chemistry","score":3.6,"timestamp":1572418800000}
{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"Geography","score":3.8,"timestamp":1572505200000}
{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"English","score":3.5,"timestamp":1572505200000}
{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"Maths","score":3.2,"timestamp":1572678000000}
{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"Physics","score":3.6,"timestamp":1572678000000}
{"studentID":211,"firstName":"John","lastName":"Doe","gender":"Male","subject":"Maths","score":3.8,"timestamp":1572678000000}
{"studentID":211,"firstName":"John","lastName":"Doe","gender":"Male","subject":"English","score":3.5,"timestamp":1572678000000}
{"studentID":211,"firstName":"John","lastName":"Doe","gender":"Male","subject":"History","score":3.2,"timestamp":1572854400000}
{"studentID":212,"firstName":"Nick","lastName":"Young","gender":"Male","subject":"History","score":3.6,"timestamp":1572854400000}
{% endcode %}
Push sample JSON into the transcript-topic
Kafka topic, using the Kafka console producer. This will add 12 records to the topic described in the transcript.json
file.
bin/kafka-console-producer.sh \
--broker-list localhost:9876 \
--topic transcript-topic < transcript.json
As soon as data flows into the stream, the Pinot table will consume it and it will be ready for querying. Head over to the Query Console to checkout the real-time data.
SELECT * FROM transcript
Here is an example config which uses SSL based authentication to talk with kafka and schema-registry. Notice there are two sets of SSL options, ones starting with ssl.
are for kafka consumer and ones with stream.kafka.decoder.prop.schema.registry.
are for SchemaRegistryClient
used by KafkaConfluentSchemaRegistryAvroMessageDecoder
.
{
"tableName": "transcript",
"tableType": "REALTIME",
"segmentsConfig": {
"timeColumnName": "timestamp",
"timeType": "MILLISECONDS",
"schemaName": "transcript",
"replicasPerPartition": "1"
},
"tenants": {},
"tableIndexConfig": {
"loadMode": "MMAP",
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "LowLevel",
"stream.kafka.topic.name": "transcript-topic",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.inputformat.avro.confluent.KafkaConfluentSchemaRegistryAvroMessageDecoder",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.zk.broker.url": "localhost:2191/kafka",
"stream.kafka.broker.list": "localhost:9876",
"schema.registry.url": "",
"security.protocol": "SSL",
"ssl.truststore.location": "",
"ssl.keystore.location": "",
"ssl.truststore.password": "",
"ssl.keystore.password": "",
"ssl.key.password": "",
"stream.kafka.decoder.prop.schema.registry.rest.url": "",
"stream.kafka.decoder.prop.schema.registry.ssl.truststore.location": "",
"stream.kafka.decoder.prop.schema.registry.ssl.keystore.location": "",
"stream.kafka.decoder.prop.schema.registry.ssl.truststore.password": "",
"stream.kafka.decoder.prop.schema.registry.ssl.keystore.password": "",
"stream.kafka.decoder.prop.schema.registry.ssl.keystore.type": "",
"stream.kafka.decoder.prop.schema.registry.ssl.truststore.type": "",
"stream.kafka.decoder.prop.schema.registry.ssl.key.password": "",
"stream.kafka.decoder.prop.schema.registry.ssl.protocol": "",
}
},
"metadata": {
"customConfigs": {}
}
}
With Kafka consumer 2.0, you can ingest transactionally committed messages only by configuring kafka.isolation.level
to read_committed
. For example,
{
"tableName": "transcript",
"tableType": "REALTIME",
"segmentsConfig": {
"timeColumnName": "timestamp",
"timeType": "MILLISECONDS",
"schemaName": "transcript",
"replicasPerPartition": "1"
},
"tenants": {},
"tableIndexConfig": {
"loadMode": "MMAP",
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "LowLevel",
"stream.kafka.topic.name": "transcript-topic",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.inputformat.avro.confluent.KafkaConfluentSchemaRegistryAvroMessageDecoder",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.zk.broker.url": "localhost:2191/kafka",
"stream.kafka.broker.list": "localhost:9876",
"stream.kafka.isolation.level": "read_committed"
}
},
"metadata": {
"customConfigs": {}
}
}
Note that the default value of this config read_uncommitted
to read all messages. Also, this config supports low-level consumer only.
Here is an example config which uses SASL_SSL based authentication to talk with kafka and schema-registry. Notice there are two sets of SSL options, some for kafka consumer and ones with stream.kafka.decoder.prop.schema.registry.
are for SchemaRegistryClient
used by KafkaConfluentSchemaRegistryAvroMessageDecoder
.
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "lowlevel",
"stream.kafka.topic.name": "mytopic",
"stream.kafka.consumer.prop.auto.offset.reset": "largest",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.broker.list": "kafka-broker-host:9092",
"stream.kafka.schema.registry.url": "https://xxx",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.inputformat.avro.confluent.KafkaConfluentSchemaRegistryAvroMessageDecoder",
"stream.kafka.decoder.prop.schema.registry.rest.url": "https://xxx",
"stream.kafka.decoder.prop.basic.auth.credentials.source": "USER_INFO",
"stream.kafka.decoder.prop.schema.registry.basic.auth.user.info": "schema_registry_username:schema_registry_password",
"sasl.mechanism": "PLAIN" ,
"security.protocol": "SASL_SSL" ,
"sasl.jaas.config":"org.apache.kafka.common.security.scram.ScramLoginModule required username=\"kafkausername\" password=\"kafkapassword\";",
"realtime.segment.flush.threshold.rows": "0",
"realtime.segment.flush.threshold.time": "24h",
"realtime.segment.flush.autotune.initialRows": "3000000",
"realtime.segment.flush.threshold.segment.size": "500M"
},
{% hint style="info" %}
Post release 0.10.0, we have started shading kafka packages inside Pinot. If you are using our latest
tagged docker images or master
build, you should replace org.apache.kafka
with shaded.org.apache.kafka
in your table config.
{% endhint %}