-
Notifications
You must be signed in to change notification settings - Fork 35
/
eval.lua
executable file
·153 lines (124 loc) · 4.67 KB
/
eval.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
require 'torch'
require 'nn'
require 'rnn'
san = require 'misc/san'
cjson = require 'cjson'
opt = {
-- data
img_train_h5 = 'data/img_train.h5',
img_test_h5 = 'data/img_test.h5',
qa_h5 = 'data/qa.h5',
params_json = 'data/params.json',
-- model
model_path = 'checkpoints/model.t7',
-- misc
batch_size = 500,
gpu = 0,
seed = 123,
result_path = 'results/'
}
-- one-line argument parser. parses enviroment variables to override the defaults
-- from https://github.com/soumith/dcgan.torch/blob/master/main.lua#L25
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
paths.mkdir(opt.result_path)
if opt.result_path == 'results/' then
local cur_time = os.date('*t', os.time())
opt.result_path = string.format('results/%d-%d-%d-%d:%d:%d/', cur_time.month, cur_time.day, cur_time.year, cur_time.hour, cur_time.min, cur_time.sec)
end
print(opt)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor')
-- dataloader
dataloader = dofile('dataloader.lua')
dataloader:initialize(opt, 'test')
collectgarbage()
print('Vocab size ' .. dataloader.vocab_size)
if opt.gpu >= 0 then
require 'cutorch'
require 'cunn'
end
-- loading from checkpoint
saved = torch.load(opt.model_path)
-- model
lm = nn.Sequential()
:add(nn.LookupTableMaskZero(dataloader.vocab_size, saved.opt.embedding_size))
:add(nn.Dropout(0.5))
:add(nn.SplitTable(1, 2))
:add(nn.Sequencer(nn.FastLSTM(saved.opt.embedding_size, saved.opt.rnn_size):maskZero(1)))
:add(nn.Sequencer(nn.FastLSTM(saved.opt.rnn_size, saved.opt.rnn_size):maskZero(1)))
:add(nn.SelectTable(-1))
model = nn.Sequential()
:add(nn.ParallelTable()
:add(nn.Identity())
:add(lm))
:add(san.n_attention_layer(saved.opt))
if opt.gpu >= 0 then
print('Shipping to cuda')
model = model:cuda()
end
model_params, model_grad_params = model:getParameters()
-- copying params from checkpoint
model_params:copy(saved['model_params'])
model:evaluate()
-- softmax layers in san-k for k = 1, 2
attention_layers = {{19}, {22, 35}}
-- forward pass; returns scores and attention maps
function forward(batch)
local scores = model:forward({batch[1], batch[2]})
local mapify = nn.View(-1, 14, 14)
local att_maps = {}
for i = 1, saved.opt.num_attention_layers do
table.insert(att_maps, mapify:forward(model.modules[2].modules[attention_layers[saved.opt.num_attention_layers][i]].output:float()))
end
return {scores:float(), att_maps}
end
-- eval loop
local num_batches = math.ceil(dataloader['ques']:size(1) / opt.batch_size)
print('No. batches ' .. num_batches)
local ques_id = torch.LongTensor(dataloader['ques']:size(1)):fill(0)
local scores = torch.zeros(dataloader['ques']:size(1), saved.opt.num_output)
local maps = torch.zeros(saved.opt.num_attention_layers, dataloader['ques']:size(1), 14, 14)
for i = 1, num_batches do
xlua.progress(i, num_batches)
local start_id = dataloader.test_id
local batch = dataloader:next_batch_eval(opt)
local end_id = dataloader.test_id - 1
output = forward(batch)
ques_id[{{start_id, end_id}}] = batch[3]
scores[{{start_id, end_id}, {}}] = output[1]
for j = 1, saved.opt.num_attention_layers do
maps[{{j}, {start_id, end_id}, {}}] = output[2][j]
end
end
_, preds = scores:max(2)
-- from https://github.com/VT-vision-lab/VQA_LSTM_CNN/blob/master/eval.lua#L230 onwards
function write_json(file, data)
print('Writing to ' .. file)
local f = io.open(file, 'w')
f:write(cjson.encode(data))
f:close()
end
paths.mkdir(opt.result_path)
local oe_res = {}
for i = 1, dataloader['ques']:size(1) do
table.insert(oe_res, {question_id = ques_id[i], answer = dataloader['ix_to_ans'][tostring(preds[{i, 1}])]})
end
write_json(opt.result_path .. 'OpenEnded_mscoco_lstm_results.json', oe_res)
-- mc_res = {}
-- for i = 1, dataloader['ques']:size(1) do
-- local mc_prob = {}
-- local tmp_id = {}
-- for j = 1, dataloader['ans_mc'][i]:size(1) do
-- if dataloader['ans_mc'][i][j] ~= 0 then
-- table.insert(mc_prob, scores[{i, dataloader['ans_mc'][i][j]}])
-- table.insert(tmp_id, dataloader['ans_mc'][i][j])
-- end
-- end
-- local _, tmp = torch.max(torch.Tensor(mc_prob), 1)
-- table.insert(mc_res, {question_id = ques_id[i], answer = dataloader['ix_to_ans'][tostring(tmp_id[tmp[1]])]})
-- end
-- write_json(opt.result_path .. 'MultipleChoice_mscoco_lstm_results.json', mc_res)
print('Writing to ' .. opt.result_path .. 'attention_maps.h5')
local att_h5 = hdf5.open(opt.result_path .. 'attention_maps.h5', 'w')
att_h5:write('/maps', maps)
att_h5:close()