-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblocksworld_project.py
282 lines (238 loc) · 11 KB
/
blocksworld_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""
Project:
BlocksWorld Implementation - Heuristic Search Problem -implemented using Heap Data Structure.
Author: @Anil B Murthy
Software used: Enthought Canopy Environment
Hardware: HP Spectre Intel i7 7th Gen 2.7 GHz
"""
import sys
import time
import random
import copy
from heapq import heappop, heappush, heapify
import numpy as np
class Node:
"""
Creates a node.
Attributes of a node -
--> state: representation of configuration of blocks.
--> depth_g: No of moves performed so far to go from the initial node to the current node = g(n).
--> parent: Parent Node - Node from which current state was obtained.
--> children: Nodes that can be generated by using a single move from current state.
--> heuristic: Estimate to goal state.
"""
def __init__(self):
self.state = []
self.depth_g = 0
self.parent = None
self.children = []
self.heuristic = None
"""
Another implementation-
class Node:
""""""
Creates a node.
Attributes of a node -
--> g = g(n) = Path length so far from root(initial state) to the current node in the graph -
No of moves performed so far to go from the initial node to the current node.
--> f(n) - priority - the whole optimization or result is based on this value of f(n) - g(n) + h(n) = g + h;
where h is the heuristic
--> Matrix/ list - adjacency matrix or list - to store the state of the node - Configuration of blocks.
""""""
def __init__(self, blocklist, parent = [], g=0, h=0, f = None):
self.g = g
self.h = h #f = g + h
self.f = g+h
self.parent = parent
self.blocklist = blocklist #list of lists that represents the state.
def successor(state): #State ~ Node object
no_stacks = len(state.blocklist)
# Total numnber of legal moves/ possible children for a state are - n*(n-1) where n is the number of stacks.
matrix = state.blocklist
for i in range(no_stacks):
for j in range(no_stacks):
(len(matrix[i]) - 1) #last element of every stack
Heuristic 1: Number of Blocks out of place - Initial Heuristic test
Heuristic 2: 'Closeness' to goal state - stack resemblence.
def compute_heuristics(self):
self.heuristic = num_of_blocks(self.state) + self.depth_g
index_count = 0
for alphabet in self.state[0]:
if self.state[0].index(alphabet) == ENUMERATE.get(alphabet):
self.heuristic = self.heuristic - 1
index_count = index_count + 1
else:
break
self.heuristic += len( self.state[0][index_count : ])
Heuristic 3:Overall Complexity to reach goal state estimation Heuristic: Attempted below
"""
def compute_heuristics(self):
self.heuristic = self.depth_g + 5*num_of_blocks(self.state)
#stack0_sorted_length = number of blocks sorted in Stack 0.
stack0_sorted_length = 0
#stack0_unsorted_length = number of blocks in stack 0 that are not sorted (if) after a certain set of sorted blocks.
stack0_unsorted_length = 0
#num_blocks_above_next = Total number of blocks above the next required block according to stack 0; The next required block may be present in any stack.
num_blocks_above_next = 0
#num_empty_stacks = Total number of stacks that have no blocks
num_empty_stacks = 0
for alphabet in self.state[0]:
if self.state[0].index(alphabet) == ENUMERATE.get(alphabet):
stack0_sorted_length += 1
else:
break
stack0_unsorted_length = len(self.state[0]) - stack0_sorted_length
for stack_number in range(1, len(self.state), 1):
if INVERSE_MAPPING[stack0_sorted_length] in self.state[stack_number]:
num_blocks_above_next = len(self.state[stack_number]) - self.state[stack_number].index(INVERSE_MAPPING[stack0_sorted_length])
if ((num_of_blocks(self.state) - stack0_sorted_length) > (len(self.state) - 1)):
for stack in self.state:
if len(stack) == 0:
num_empty_stacks += 1
self.heuristic += (-5)*stack0_sorted_length + 2*stack0_unsorted_length + 2*num_blocks_above_next + num_empty_stacks
def get_heuristics(self):
return self.heuristic
""" set depth & get depth sub routines"""
def set_depth(self, depth_g):
self.depth_g = depth_g
def get_depth(self):
return self.depth_g
""" set state & get state sub routines"""
def set_state(self, state):
self.state = state
def get_state(self):
return self.state
""" set parent & get parent sub routines"""
def set_parent(self, parent):
self.parent = parent
def get_parent(self):
return self.parent
""" Generate Child Nodes """
def child_node(self):
children = []
for i in range(len(self.state)): #iterating over all stacks
if len( self.state[i] ) == 0:
continue
else:
for j in range(len(self.state)):
if i == j:
continue
curr_stack = copy.deepcopy(self.state)
curr_stack[j].append(curr_stack[i].pop())
children.append(curr_stack)
return children
""" A* search algorithm """
def astar(root):
frontier = []
visited = set([])
closed = set([])
visited.add(tuple(tuple(instance) for instance in root.get_state()))
heappush(frontier, (root.get_heuristics() , root))
count = 0
print
while frontier :
count += 1
if count == 10000:
print " Iteration limit reached. Goal State out of bounds !! "
sys.exit()
element = heappop(frontier)
parent = element[1]
print "Iteration no.= ", count, "\tQueue = ", len(frontier), "\tDepth = ", parent.get_depth()
closed.add(tuple(tuple(element) for element in parent.get_state()))
if touch_goal(parent.get_state()):
print "\nGoal State reached: Success !!"
print "\nThe total number of iterations are:" + str(count)
print "\nThe frontier size is:" + str(len(frontier))
return parent
else:
for child_state in parent.child_node():
if tuple(tuple(element) for element in child_state) in closed:
continue
else:
#set parameters for child node - Instantiate child as a node & set attributes
child = Node()
child.set_state(child_state)
child.set_parent(parent)
child.set_depth(parent.get_depth() + 1)
# set heuristic after setting depth
child.compute_heuristics()
# check if child is in frontier
if tuple(tuple(ele) for ele in child.get_state()) in visited:
# iterate through heap , check if heuristic of node in heap is more than child, if so delete the heap element and add child
index = 0
for priority, node in frontier:
if node.get_state() == child.get_state() :
if child.get_heuristics() < node.get_heuristics():
frontier[index] = frontier[-1]
frontier.pop()
heappush(frontier, (child.get_heuristics(), child))
heapify(frontier)
break
else:
# if heuristic of child is more than the state in heap set child to None for gc
child = None
break
else:
index += 1
else:
heappush(frontier, (child.get_heuristics(), child))
visited.add(tuple(tuple(ele) for ele in child.get_state()))
def getpath(goal):
path = []
path.append(goal)
while goal.get_parent() != goal:
goal = goal.get_parent()
path.insert(0, goal)
for node in path[1: ]:
print "\nNext Move:"
printstate(node.get_state())
def num_of_blocks(stacks):
count = 0
for stack in stacks:
count += len(stack)
return count
def touch_goal(stacks):
count = 0
for alphabet in stacks[0]:
if stacks[0].index(alphabet) == ENUMERATE.get(alphabet):
count += 1
else:
return False
if count == num_of_blocks(stacks):
return True
else:
return False
def printstate(state):
for i in range(len(state)):
print i+1, '|' , state[i]
# ENUMERATE - Dictionary to Enumerating alphabets in order; In Java - enum operator used
ENUMERATE = { "A" : 0 , "B" : 1 , "C" : 2 , "D" : 3 , "E" : 4, "F" : 5 , "G" : 6 , "H" : 7 , "I": 8 , "J" : 9 , "K" : 10, "L" : 11, \
"M": 12, "N" : 13, "O" : 14 , "P" : 15, "Q" : 16 , "R" : 17, "S" : 18 ,"T" : 19 , "U" : 20 , "V" : 21 , "W" : 22 , "X" : 23 , "Y" : 24 , "Z" : 25 }
INVERSE_MAPPING = dict((v, k) for k, v in ENUMERATE.iteritems())
if (len(sys.argv) != 3):
print("\nError:- Run file using: \n Linux: 'python <file_location/>blocksworld_project.py <number of blocks> <number of stacks>'\n Enthought Canopy/Idle environments: %run <file_location/>blocksworld_project.py <number of blocks> <number of stacks>")
sys.exit()
numOfBlocks, numOfStacks = int(sys.argv[1]), int(sys.argv[2])
list_of_blocks, ground_state = [], []
for i in range(numOfBlocks):
list_of_blocks.append(INVERSE_MAPPING[i])
random.shuffle(list_of_blocks)
ground_state = map(list, np.array_split(list_of_blocks, numOfStacks))
print "\nThe Initial State is: "
printstate(ground_state)
# ground_state is the starting(initial) state.
# root = root of search tree for A* Search
root = Node()
root.set_parent(root)
root.set_state(ground_state)
root.set_depth(0)
root.compute_heuristics()
start = time.time()
goal = astar(root)
stop = time.time()
print "Total execution time = " + str(stop - start) + " s."
print "\nGoal State reached at a depth of " + str(goal.get_depth())
print "\nInitial State: "
printstate(root.get_state())
print "\nSequence of moves according to obtained search path is: "
getpath(goal)