forked from nagolinc/dreamgaussian
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmesh.py
394 lines (329 loc) · 13.4 KB
/
mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os
import cv2
import numpy as np
import trimesh
import torch
import torch.nn.functional as F
def dot(x, y):
return torch.sum(x * y, -1, keepdim=True)
def length(x, eps=1e-20):
return torch.sqrt(torch.clamp(dot(x, x), min=eps))
def safe_normalize(x, eps=1e-20):
return x / length(x, eps)
class Mesh:
def __init__(
self,
v=None,
f=None,
vn=None,
fn=None,
vt=None,
ft=None,
albedo=None,
device=None,
):
self.device = device
self.v = v
self.vn = vn
self.vt = vt
self.f = f
self.fn = fn
self.ft = ft
# only support a single albedo
self.albedo = albedo
self.ori_center = 0
self.ori_scale = 1
@classmethod
def load(cls, path=None, resize=True, **kwargs):
# assume init with kwargs
if path is None:
mesh = cls(**kwargs)
# obj supports face uv
elif path.endswith(".obj"):
mesh = cls.load_obj(path, **kwargs)
# trimesh only supports vertex uv, but can load more formats
else:
mesh = cls.load_trimesh(path, **kwargs)
print(f"[Mesh loading] v: {mesh.v.shape}, f: {mesh.f.shape}")
# auto-normalize
if resize:
mesh.auto_size()
# auto-fix normal
if mesh.vn is None:
mesh.auto_normal()
print(f"[Mesh loading] vn: {mesh.vn.shape}, fn: {mesh.fn.shape}")
# auto-fix texture
if mesh.vt is None:
mesh.auto_uv(cache_path=path)
print(f"[Mesh loading] vt: {mesh.vt.shape}, ft: {mesh.ft.shape}")
return mesh
# load from obj file
@classmethod
def load_obj(cls, path, albedo_path=None, device=None, init_empty_tex=False):
assert os.path.splitext(path)[-1] == ".obj"
mesh = cls()
# device
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mesh.device = device
# try to find texture from mtl file
if albedo_path is None:
mtl_path = path.replace(".obj", ".mtl")
if os.path.exists(mtl_path):
with open(mtl_path, "r") as f:
lines = f.readlines()
for line in lines:
split_line = line.split()
# empty line
if len(split_line) == 0:
continue
prefix = split_line[0]
# NOTE: simply use the first map_Kd as albedo!
if "map_Kd" in prefix:
albedo_path = os.path.join(os.path.dirname(path), split_line[1])
print(f"[load_obj] use texture from: {albedo_path}")
break
if init_empty_tex or albedo_path is None or not os.path.exists(albedo_path):
# init an empty texture
print(f"[load_obj] init empty albedo!")
# albedo = np.random.rand(1024, 1024, 3).astype(np.float32)
albedo = np.ones((1024, 1024, 3), dtype=np.float32) * np.array(
[0.5, 0.5, 0.5]
) # default color
else:
albedo = cv2.imread(albedo_path, cv2.IMREAD_UNCHANGED)
albedo = cv2.cvtColor(albedo, cv2.COLOR_BGR2RGB)
albedo = albedo.astype(np.float32) / 255
print(f"[load_obj] load texture: {albedo.shape}")
# import matplotlib.pyplot as plt
# plt.imshow(albedo)
# plt.show()
mesh.albedo = torch.tensor(albedo, dtype=torch.float32, device=device)
# load obj
with open(path, "r") as f:
lines = f.readlines()
def parse_f_v(fv):
# pass in a vertex term of a face, return {v, vt, vn} (-1 if not provided)
# supported forms:
# f v1 v2 v3
# f v1/vt1 v2/vt2 v3/vt3
# f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3
# f v1//vn1 v2//vn2 v3//vn3
xs = [int(x) - 1 if x != "" else -1 for x in fv.split("/")]
xs.extend([-1] * (3 - len(xs)))
return xs[0], xs[1], xs[2]
# NOTE: we ignore usemtl, and assume the mesh ONLY uses one material (first in mtl)
vertices, texcoords, normals = [], [], []
faces, tfaces, nfaces = [], [], []
for line in lines:
split_line = line.split()
# empty line
if len(split_line) == 0:
continue
# v/vn/vt
prefix = split_line[0].lower()
if prefix == "v":
vertices.append([float(v) for v in split_line[1:]])
elif prefix == "vn":
normals.append([float(v) for v in split_line[1:]])
elif prefix == "vt":
val = [float(v) for v in split_line[1:]]
texcoords.append([val[0], 1.0 - val[1]])
elif prefix == "f":
vs = split_line[1:]
nv = len(vs)
v0, t0, n0 = parse_f_v(vs[0])
for i in range(nv - 2): # triangulate (assume vertices are ordered)
v1, t1, n1 = parse_f_v(vs[i + 1])
v2, t2, n2 = parse_f_v(vs[i + 2])
faces.append([v0, v1, v2])
tfaces.append([t0, t1, t2])
nfaces.append([n0, n1, n2])
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
mesh.vt = (
torch.tensor(texcoords, dtype=torch.float32, device=device)
if len(texcoords) > 0
else None
)
mesh.vn = (
torch.tensor(normals, dtype=torch.float32, device=device)
if len(normals) > 0
else None
)
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
mesh.ft = (
torch.tensor(tfaces, dtype=torch.int32, device=device)
if texcoords is not None
else None
)
mesh.fn = (
torch.tensor(nfaces, dtype=torch.int32, device=device)
if normals is not None
else None
)
return mesh
@classmethod
def load_trimesh(cls, path, device=None):
mesh = cls()
# device
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mesh.device = device
# use trimesh to load glb, assume only has one single RootMesh...
_data = trimesh.load(path)
if isinstance(_data, trimesh.Scene):
mesh_keys = list(_data.geometry.keys())
assert (
len(mesh_keys) == 1
), f"{path} contains more than one meshes, not supported!"
_mesh = _data.geometry[mesh_keys[0]]
elif isinstance(_data, trimesh.Trimesh):
_mesh = _data
else:
raise NotImplementedError(f"type {type(_data)} not supported!")
# TODO: exception handling if no material
_material = _mesh.visual.material
if isinstance(_material, trimesh.visual.material.PBRMaterial):
texture = np.array(_material.baseColorTexture).astype(np.float32) / 255
elif isinstance(_material, trimesh.visual.material.SimpleMaterial):
texture = (
np.array(_material.to_pbr().baseColorTexture).astype(np.float32) / 255
)
else:
raise NotImplementedError(f"material type {type(_material)} not supported!")
print(f"[load_obj] load texture: {texture.shape}")
mesh.albedo = torch.tensor(texture, dtype=torch.float32, device=device)
vertices = _mesh.vertices
texcoords = _mesh.visual.uv
texcoords[:, 1] = 1 - texcoords[:, 1]
normals = _mesh.vertex_normals
# trimesh only support vertex uv...
faces = tfaces = nfaces = _mesh.faces
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
mesh.vt = (
torch.tensor(texcoords, dtype=torch.float32, device=device)
if len(texcoords) > 0
else None
)
mesh.vn = (
torch.tensor(normals, dtype=torch.float32, device=device)
if len(normals) > 0
else None
)
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
mesh.ft = (
torch.tensor(tfaces, dtype=torch.int32, device=device)
if texcoords is not None
else None
)
mesh.fn = (
torch.tensor(nfaces, dtype=torch.int32, device=device)
if normals is not None
else None
)
return mesh
# aabb
def aabb(self):
return torch.min(self.v, dim=0).values, torch.max(self.v, dim=0).values
# unit size
@torch.no_grad()
def auto_size(self):
vmin, vmax = self.aabb()
self.ori_center = (vmax + vmin) / 2
self.ori_scale = 1.2 / torch.max(vmax - vmin).item() # to ~ [-0.6, 0.6]
self.v = (self.v - self.ori_center) * self.ori_scale
def auto_normal(self):
i0, i1, i2 = self.f[:, 0].long(), self.f[:, 1].long(), self.f[:, 2].long()
v0, v1, v2 = self.v[i0, :], self.v[i1, :], self.v[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
vn = torch.zeros_like(self.v)
vn.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
vn.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
vn.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
vn = torch.where(
dot(vn, vn) > 1e-20,
vn,
torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device),
)
vn = safe_normalize(vn)
self.vn = vn
self.fn = self.f
def auto_uv(self, cache_path=None):
# try to load cache
if cache_path is not None:
cache_path = cache_path.replace(".obj", "_uv.npz")
if cache_path is not None and os.path.exists(cache_path):
data = np.load(cache_path)
vt_np, ft_np = data["vt"], data["ft"]
else:
import xatlas
v_np = self.v.detach().cpu().numpy()
f_np = self.f.detach().int().cpu().numpy()
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
# chart_options.max_iterations = 4
atlas.generate(chart_options=chart_options)
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
# save to cache
if cache_path is not None:
np.savez(cache_path, vt=vt_np, ft=ft_np)
vt = torch.from_numpy(vt_np.astype(np.float32)).to(self.device)
ft = torch.from_numpy(ft_np.astype(np.int32)).to(self.device)
self.vt = vt
self.ft = ft
def to(self, device):
self.device = device
for name in ["v", "f", "vn", "fn", "vt", "ft", "albedo"]:
tensor = getattr(self, name)
if tensor is not None:
setattr(self, name, tensor.to(device))
return self
# write to ply file (only geom)
def write_ply(self, path):
assert path.endswith(".ply")
v_np = self.v.detach().cpu().numpy()
f_np = self.f.detach().cpu().numpy()
_mesh = trimesh.Trimesh(vertices=v_np, faces=f_np)
_mesh.export(path)
# write to obj file
def write(self, path):
mtl_path = path.replace(".obj", ".mtl")
albedo_path = path.replace(".obj", "_albedo.png")
v_np = self.v.detach().cpu().numpy()
vt_np = self.vt.detach().cpu().numpy() if self.vt is not None else None
vn_np = self.vn.detach().cpu().numpy() if self.vn is not None else None
f_np = self.f.detach().cpu().numpy()
ft_np = self.ft.detach().cpu().numpy() if self.ft is not None else None
fn_np = self.fn.detach().cpu().numpy() if self.fn is not None else None
with open(path, "w") as fp:
fp.write(f"mtllib {os.path.basename(mtl_path)} \n")
for v in v_np:
fp.write(f"v {v[0]} {v[1]} {v[2]} \n")
if vt_np is not None:
for v in vt_np:
fp.write(f"vt {v[0]} {1 - v[1]} \n")
if vn_np is not None:
for v in vn_np:
fp.write(f"vn {v[0]} {v[1]} {v[2]} \n")
fp.write(f"usemtl defaultMat \n")
for i in range(len(f_np)):
fp.write(
f'f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1 if ft_np is not None else ""}/{fn_np[i, 0] + 1 if fn_np is not None else ""} \
{f_np[i, 1] + 1}/{ft_np[i, 1] + 1 if ft_np is not None else ""}/{fn_np[i, 1] + 1 if fn_np is not None else ""} \
{f_np[i, 2] + 1}/{ft_np[i, 2] + 1 if ft_np is not None else ""}/{fn_np[i, 2] + 1 if fn_np is not None else ""} \n'
)
with open(mtl_path, "w") as fp:
fp.write(f"newmtl defaultMat \n")
fp.write(f"Ka 1 1 1 \n")
fp.write(f"Kd 1 1 1 \n")
fp.write(f"Ks 0 0 0 \n")
fp.write(f"Tr 1 \n")
fp.write(f"illum 1 \n")
fp.write(f"Ns 0 \n")
fp.write(f"map_Kd {os.path.basename(albedo_path)} \n")
albedo = self.albedo.detach().cpu().numpy()
albedo = (albedo * 255).astype(np.uint8)
cv2.imwrite(albedo_path, cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR))