forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fovea_r50_fpn_4x4_1x_coco.py
52 lines (52 loc) · 1.57 KB
/
fovea_r50_fpn_4x4_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
_base_ = [
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
type='FOVEA',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
num_outs=5,
add_extra_convs='on_input'),
bbox_head=dict(
type='FoveaHead',
num_classes=80,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
base_edge_list=[16, 32, 64, 128, 256],
scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)),
sigma=0.4,
with_deform=False,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=1.50,
alpha=0.4,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
# training and testing settings
train_cfg=dict(),
test_cfg=dict(
nms_pre=1000,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
data = dict(samples_per_gpu=4, workers_per_gpu=4)
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)