-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
151 lines (121 loc) · 4.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""The main file"""
import argparse
from typing import Any
import numpy as np
import ray
import torch
from dataprocess import load_data
from server import Server
from train_class import Trainer_General
from utils import get_indexes, label_dirichlet_partition
ray.init()
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataset", default="cora", type=str)
parser.add_argument("-c", "--global_rounds", default=100, type=int)
parser.add_argument("-i", "--local_step", default=5, type=int)
parser.add_argument("-n", "--n_trainer", default=5, type=int)
parser.add_argument("-a", "--alpha", default=0.01, type=float)
parser.add_argument("-nl", "--nlayer", default=2, type=int)
parser.add_argument("-hd", "--hidden_dim", default=32, type=int)
parser.add_argument("-nh", "--num_heads", default=2, type=int)
parser.add_argument("-td", "--tran_dropout", default=0.2, type=float)
parser.add_argument("-fd", "--feat_dropout", default=0.6, type=float)
parser.add_argument("-pd", "--prop_dropout", default=0.2, type=float)
parser.add_argument("-no", "--norm", default="none", type=str)
parser.add_argument("-lr", "--lr", default=0.05, type=float)
parser.add_argument("-wd", "--weight_decay", default=5e-3, type=float)
parser.add_argument("-r", "--repeat_time", default=3, type=int)
args = parser.parse_args()
np.random.seed(42)
torch.manual_seed(42)
adj, x, y, idx_train, idx_val, idx_test = load_data(args.dataset)
device = torch.device("cpu")
average_final_test_loss_repeats = []
average_final_test_accuracy_repeats = []
class_num = y.max().item() + 1
for repeat in range(args.repeat_time):
split_data_indexes = label_dirichlet_partition(
y, len(y), class_num, args.n_trainer, args.alpha
)
for i in range(args.n_trainer):
split_data_indexes[i] = np.array(split_data_indexes[i])
split_data_indexes[i].sort()
split_data_indexes[i] = torch.tensor(split_data_indexes[i])
in_com_train_data_indexes, in_com_test_data_indexes = get_indexes(
split_data_indexes, args.n_trainer, idx_train, idx_test
)
@ray.remote(num_cpus=0.5, scheduling_strategy="SPREAD")
class Trainer(Trainer_General):
def __init__(self, *args: Any, **kwds: Any):
super().__init__(*args, **kwds)
trainers = [
Trainer.remote(
i,
class_num,
adj[split_data_indexes[i][:, None], split_data_indexes[i]],
x[split_data_indexes[i]],
y[split_data_indexes[i]],
in_com_train_data_indexes[i],
in_com_test_data_indexes[i],
args.nlayer,
args.hidden_dim,
args.num_heads,
args.tran_dropout,
args.feat_dropout,
args.prop_dropout,
args.norm,
args.lr,
args.weight_decay,
args.local_step,
)
for i in range(args.n_trainer)
]
server = Server(
class_num,
x.shape[1],
args.nlayer,
args.hidden_dim,
args.num_heads,
args.tran_dropout,
args.feat_dropout,
args.prop_dropout,
args.norm,
trainers,
)
print("global_rounds", args.global_rounds)
for i in range(args.global_rounds):
server.train(i)
results = [trainer.get_all_loss_accuracy.remote() for trainer in server.trainers]
results = np.array([ray.get(result) for result in results])
train_data_weights = [len(i) for i in in_com_train_data_indexes]
test_data_weights = [len(i) for i in in_com_test_data_indexes]
average_train_loss = np.average(
[row[0] for row in results], weights=train_data_weights, axis=0
)
average_train_accuracy = np.average(
[row[1] for row in results], weights=train_data_weights, axis=0
)
average_test_loss = np.average(
[row[2] for row in results], weights=test_data_weights, axis=0
)
average_test_accuracy = np.average(
[row[3] for row in results], weights=test_data_weights, axis=0
)
results = [trainer.local_test.remote() for trainer in server.trainers]
results = np.array([ray.get(result) for result in results])
average_final_test_loss = np.average(
[row[0] for row in results], weights=test_data_weights, axis=0
)
average_final_test_accuracy = np.average(
[row[1] for row in results], weights=test_data_weights, axis=0
)
print(average_final_test_loss, average_final_test_accuracy)
average_final_test_loss_repeats.append(average_final_test_loss)
average_final_test_accuracy_repeats.append(average_final_test_accuracy)
print(
f"average_testing_loss {np.average(average_final_test_loss_repeats)} std {np.std(average_final_test_loss_repeats)}"
)
print(
f"average_testing_accuracy {np.average(average_final_test_accuracy_repeats)} std {np.std(average_final_test_accuracy_repeats)}"
)
ray.shutdown()