-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathdatasets.py
78 lines (63 loc) · 2.7 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from torch.utils.data import Dataset
from PIL import Image
import os
from glob import glob
from torchvision import transforms
from torch.utils.data.dataset import Dataset
# from data_loader.datasets import Dataset
import torch
import pdb
import math
class Datasets(Dataset):
def __init__(self, data_dir, image_size=256):
self.data_dir = data_dir
self.image_size = image_size
if not os.path.exists(data_dir):
raise Exception(f"[!] {self.data_dir} not exitd")
self.image_path = sorted(glob(os.path.join(self.data_dir, "*.*")))
def __getitem__(self, item):
image_ori = self.image_path[item]
image = Image.open(image_ori).convert('RGB')
transform = transforms.Compose([
# transforms.RandomResizedCrop(self.image_size),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
# transforms.Normalize((5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
return transform(image)
def __len__(self):
return len(self.image_path)
def get_loader(train_data_dir, test_data_dir, image_size, batch_size):
train_dataset = Datasets(train_data_dir, image_size)
test_dataset = Datasets(test_data_dir, image_size)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
return train_loader, test_loader
def get_train_loader(train_data_dir, image_size, batch_size):
train_dataset = Datasets(train_data_dir, image_size)
torch.manual_seed(3334)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True)
return train_dataset, train_loader
class TestKodakDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
if not os.path.exists(data_dir):
raise Exception(f"[!] {self.data_dir} not exitd")
self.image_path = sorted(glob(os.path.join(self.data_dir, "*.*")))
def __getitem__(self, item):
image_ori = self.image_path[item]
image = Image.open(image_ori).convert('RGB')
transform = transforms.Compose([
transforms.ToTensor(),
])
return transform(image)
def __len__(self):
return len(self.image_path)