-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path19_step_2_classification.py
219 lines (183 loc) · 6.87 KB
/
19_step_2_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import warnings
import joblib
import numpy as np
import pandas as pd
import torch
from imblearn.over_sampling import SMOTE
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.metrics import (
accuracy_score,
classification_report,
f1_score,
precision_score,
recall_score,
)
from sklearn.model_selection import GridSearchCV, train_test_split
from torch.utils.data import Dataset
from transformers import (
BertForSequenceClassification,
BertTokenizer,
EarlyStoppingCallback,
Trainer,
TrainingArguments,
)
from xgboost import XGBClassifier
# Игнорирование предупреждений
warnings.filterwarnings("ignore")
# Загрузка данных
df1 = pd.read_csv("path_to_df1.csv")
# Подготовка данных
# Отделение признаков (текст) и целевой переменной (is_homicide)
X = df1["text_prep"]
y = df1["is_homicide"]
# Разделение данных на обучающую и валидационную выборки
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# Определение пользовательского датасета
class CustomDataset(Dataset):
def __init__(self, texts, labels, tokenizer, max_len):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, index):
text = self.texts[index]
label = self.labels[index]
encoding = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_len,
return_token_type_ids=False,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
return {
"text": text,
"input_ids": encoding["input_ids"].flatten(),
"attention_mask": encoding["attention_mask"].flatten(),
"labels": torch.tensor(label, dtype=torch.long),
}
# Инициализация токенизатора и модели
tokenizer = BertTokenizer.from_pretrained("DeepPavlov/rubert-base-cased")
model = BertForSequenceClassification.from_pretrained(
"DeepPavlov/rubert-base-cased", num_labels=2
)
# Создание датасетов
train_dataset = CustomDataset(
X_train.to_numpy(), y_train.to_numpy(), tokenizer, max_len=128
)
val_dataset = CustomDataset(X_val.to_numpy(), y_val.to_numpy(), tokenizer, max_len=128)
# Определение аргументов для тренировки
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
# Инициализация тренера
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# Тренировка модели
trainer.train()
# Оценка модели BERT
predictions, labels, _ = trainer.predict(val_dataset)
predictions = np.argmax(predictions, axis=1)
# Вывод метрик оценки для BERT
bert_accuracy = accuracy_score(y_val, predictions)
bert_precision = precision_score(y_val, predictions)
bert_recall = recall_score(y_val, predictions)
bert_f1 = f1_score(y_val, predictions)
print(f"BERT Accuracy: {bert_accuracy:.4f}")
print(f"BERT Precision: {bert_precision:.4f}")
print(f"BERT Recall: {bert_recall:.4f}")
print(f"BERT F1 Score: {bert_f1:.4f}")
print("\nBERT Classification Report:\n", classification_report(y_val, predictions))
# Подсчет значений целевой переменной
print(df1["is_homicide"].value_counts())
# RandomForest и XGBoost
# Подготовка данных
vectorizer = TfidfVectorizer(max_features=5000)
X_train_vec = vectorizer.fit_transform(X_train)
X_val_vec = vectorizer.transform(X_val)
# Обработка дисбаланса классов с помощью SMOTE
smote = SMOTE(random_state=42)
X_train_vec_res, y_train_res = smote.fit_resample(X_train_vec, y_train)
# RandomForest
# Определение модели RandomForest
rf_model = RandomForestClassifier(random_state=42)
# Определение гиперпараметров для Grid Search
rf_params = {
"n_estimators": [100, 200, 300],
"max_depth": [10, 20, 30],
"min_samples_split": [2, 5, 10],
"min_samples_leaf": [1, 2, 4],
}
# Grid Search для RandomForest
rf_grid = GridSearchCV(
estimator=rf_model, param_grid=rf_params, cv=3, n_jobs=-1, verbose=2
)
rf_grid.fit(X_train_vec_res, y_train_res)
# Лучшая модель RandomForest
best_rf = rf_grid.best_estimator_
# Оценка RandomForest
rf_predictions = best_rf.predict(X_val_vec)
rf_accuracy = accuracy_score(y_val, rf_predictions)
rf_precision = precision_score(y_val, rf_predictions)
rf_recall = recall_score(y_val, rf_predictions)
rf_f1 = f1_score(y_val, rf_predictions)
print(f"RandomForest Accuracy: {rf_accuracy:.4f}")
print(f"RandomForest Precision: {rf_precision:.4f}")
print(f"RandomForest Recall: {rf_recall:.4f}")
print(f"RandomForest F1 Score: {rf_f1:.4f}")
# Сохранение модели и векторизатора
joblib.dump(best_rf, "rf_model.pkl")
joblib.dump(vectorizer, "tfidf_vectorizer.pkl")
# XGBoost
# Определение модели XGBoost
xgb_model = XGBClassifier(
random_state=42, use_label_encoder=False, eval_metric="logloss"
)
# Определение гиперпараметров для Grid Search
xgb_params = {
"n_estimators": [100, 200, 300],
"max_depth": [3, 6, 9],
"learning_rate": [0.01, 0.1, 0.2],
"subsample": [0.8, 1.0],
"colsample_bytree": [0.8, 1.0],
}
# Grid Search для XGBoost
xgb_grid = GridSearchCV(
estimator=xgb_model, param_grid=xgb_params, cv=3, n_jobs=-1, verbose=2
)
xgb_grid.fit(X_train_vec_res, y_train_res)
# Лучшая модель XGBoost
best_xgb = xgb_grid.best_estimator_
# Оценка XGBoost
xgb_predictions = best_xgb.predict(X_val_vec)
xgb_accuracy = accuracy_score(y_val, xgb_predictions)
xgb_precision = precision_score(y_val, xgb_predictions)
xgb_recall = recall_score(y_val, xgb_predictions)
xgb_f1 = f1_score(y_val, xgb_predictions)
print(f"XGBoost Accuracy: {xgb_accuracy:.4f}")
print(f"XGBoost Precision: {xgb_precision:.4f}")
print(f"XGBoost Recall: {xgb_recall:.4f}")
print(f"XGBoost F1 Score: {xgb_f1:.4f}")
# Сохранение модели и векторизатора
joblib.dump(best_xgb, "xgb_model.pkl")
joblib.dump(vectorizer, "tfidf_vectorizer.pkl")